X3DOM
Fast content delivery for declarative 3D

WebGL BOF, Siggraph 2011

Johannes Behr
W3C: Chair of „Declarative 3D“ Community Group

johannes.behr@igd.fraunhofer.de
W3C “Declarative 3D” CG
Fraunhofer IGD, DFKI and Web3D Consortium

Declarative
- Scenegraph
- Part of HTML-document
- DOM Integration
- CSS/Events

Imperative
- Procedural API
- Drawing context
- Flexible

2D
(HTML5 spec)

3D
(No W3C spec yet)

Runs on

<!DOCTYPE html >
<html >
 <body>
 <h1>Hello X3DOM World</h1>
 <x3d xmlns='…' profile='HTML' >
 <scene>
 <shape>
 <box></box>
 </shape>
 </scene>
 </x3d>
 </body>
</html>
Declarative (X)3D in HTML

Efficient processing of large content sets

Real applications tend to be huge HTML-files
Unpleasant non-interactive user experience
Browser are not build to hold GByte of DOM attribute data (e.g. multiple data copies)
Reference external sub-trees
X3D “Inline” node
black/white-box interface?
Binary XML decompression
x3z: (ISO) Decoding on JS-Level
x3db: (ISO) Fast Infoset: No UA or JS-lib
EXI: (W3C) Even worse
DOM holds structure and data

```html
<!DOCTYPE html>
<html>
  <head>
    <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'/>
    <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script>
  </head>
  <body>
    <x3d id='3dstuff' width='400px' height='400px'>
      <scene DEF='scene'>
        <shape>
          <appearance>
            <material diffuseColor='#FF0000'></material>
          </appearance>
          <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 5 7 4 7 8 4 9 7 8 9 8 7 6 9 6 10 9 10 2 11 10 11 0 2 6 0 10 11 12 3 8 11 3 4 8 3 11 8 9'>
            <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651 0.276393 -0.447214 0.525731 -0.273607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393'></coordinate>
          </indexedTriangleSet>
        </shape>
      </scene>
    </x3d>
  </body>
</html>
```
DOM holds structure and data
More than 95% are usually unstructured data
Separate structure and data
HTML element reference external binary data element

DOM / HTML Document

Binary asset resources

Generic asset dictionary
- Directly loaded to TypedArrays
- Data assignment in JS
- Multiple arrays per file
- Multiple files per scene

Images and Videos
- Encodes int/float arrays (e.g. coordinate, normal, texCoords, generic-attributes) in RGBA-images
- Multiple images per array
- Multiple images per scene
/<video> as generic binary container
Powerful abstraction for efficient data encoding for Web-apps

Decompression for free (only lossless png is useful right now)
Streaming updates for free: WebGL/X3DOM support <video>
Quantization and encoding supports LOD & streaming of precision
Flexible end efficient visualization

Single VBO: Extremely fast visualization with Vertex Textures Units, precession grows until vertex texture limit is reached
Multiple VBO: WebGL without Vertex Texture Unit / Flash 11

Encoding is simple, fast and works with any mesh type
Browser/Server well optimized to handle large number of images and parallel downloads of image => Great user experience

User, Developer, Browser, Server and W3C love images and video: Content is HTML + image/video-resource data
Demo
http://x3dom.org/x3dom/example/x3dom_imageGeometry.html

X3DOM Image Geometry Example

Uses 158 `imageGeometry` nodes to show the 1,097,716 triangles Buddha