PBR IN GLTF
CURRENT STATE

Max Limper & Timo Sturm
Fraunhofer IGD / TU Darmstadt
Physically-Based Rendering (PBR) gets increasingly popular

- glTF 1.0: two ways to define materials
 - Full custom technique / shaders (complex, too general)
 - KHR_materials_common (non-PBR-ready blinn / phong)

- **Aim**: PBR-ready materials in glTF, using most common parameters
COMMON PARAMETER SET
CASE STUDY

<table>
<thead>
<tr>
<th>Diffuse</th>
<th>NDF (D)</th>
<th>Masking (G)</th>
<th>Fresnel (F)</th>
<th>Roughness (α)</th>
<th>Textures</th>
<th>Specular AA</th>
</tr>
</thead>
</table>
| **Frostbite 3** | Disney's Model [Burley12] | GGX | Height-Correlated Smith [Hertz14] | Schlick | α = (1 - Smoothness)^2 | • Normal
• BaseColor
• Smoothness
• Reflectance
• Metallic | None |
| **Unity 5** | • Torrance-Sparrow (PC/Consoles)
• Minimalist Cook-Torrance (Mobile ES 3.0+)
• Blinn-Phong in CDF form (DX9, ES 2.0) | • Blinn-Phong (PC/Consoles)
• Approx. Kehlman (Mobile ES 3.0+)
• Lookup Texture (DX9, ES 2.0) | Schlick | α = 1 - Smoothness | • Albedo (RGB)
• Specular (RGB)
• Metallic (R)
• Smoothness (A) | None |
| **CryEngine 3** | Oren-Nayar [OREN84] | GGX | Schlick-Smith | Schlick | α = (1 - Smoothness)^0.7|^5 | • Normal (RGB)
• Translucency Luminance/Prebaked AO Term (A)
• Diffuse Albedo (RGB)
• Subsurface Scattering Profile (A)
• Roughness (R)
• Specular YCbCr/Transmittance/CbCr (GBA) | Tolkovig |
| **BlackOps 2** | Cook-Torrance based | Blinn-Phong | Schlick-Smith | Approx. Schlick 2^(-10x) = (1-x)^5 | a = 8192^g
a: specular power
g: gloss | ??? | None |
| **The Order 1886** | Lambert (balanced with specular intensity)
• GGX
• Beckman
• Anisotropic GGX | Smith | Schlick | α = Roughness | • Spherical Gaussians Normals (RG)
• Diffuse with Alpha (RGSA)
• Specular with Intensity (RGBA)
• Roughness (R)
• AO (G)
• BRDF Blend (B)
• Anisotropy (A) | • Frequency Domain
• Normal Map
• Filtering [Han et al.] |
| **Unreal 4.7** | Lambert | GGX | Schlick-Smith | Schlick | α = Roughness | • BaseColor
• Metallic
• Roughness | Tolkovig |
COMMON PARAMETER SET
CASE STUDY

<table>
<thead>
<tr>
<th>Diffuse</th>
<th>NDF (D)</th>
<th>Masking (G)</th>
<th>Fresnel (F)</th>
<th>Roughness (α)</th>
<th>Textures</th>
<th>Specular AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frostbite 3</td>
<td>Disney’s Model [Burley12]</td>
<td>GGX</td>
<td>Height-Correlated Smith [Heitz14]</td>
<td>Schlick</td>
<td>α = (1 - Smoothness)²</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Albedo (RGB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specular (RGB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metallic (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smoothness (A)</td>
<td></td>
</tr>
<tr>
<td>Unity 5</td>
<td>Torrance-Sparrow (PC/console)</td>
<td>Blinn-Phong (PC/console)</td>
<td>Approx. Kerlemen (Mobile ES 3.0+)</td>
<td>Schlick</td>
<td>α = 1 - Smoothness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Albedo (RGB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specular (RGB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metallic (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smoothness (A)</td>
<td></td>
</tr>
<tr>
<td>CryEngine 3</td>
<td>Oren-Nayar [OREN84]</td>
<td>GGX</td>
<td>Schlick-Smith</td>
<td>Schlick</td>
<td>α = (1 -</td>
<td>Normal (RGB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smoothness)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specular YCBCF Transmittance GBD (GBA)</td>
<td></td>
</tr>
<tr>
<td>BlackOps 2</td>
<td>Cook-Torrance based</td>
<td>Blinn-Phong</td>
<td>Schlick-Smith</td>
<td>Approx. Schlick 2^(10x) = (1-x)/5</td>
<td>α = 8192°g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α: specular power</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g: gloss</td>
<td></td>
</tr>
<tr>
<td>The Order 1886</td>
<td>Lambert (balanced with specular intensity)</td>
<td>GGX</td>
<td>Beckmann</td>
<td>Smith</td>
<td>Schlick</td>
<td>α = Roughness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spherical Gaussians Normals (RG)</td>
<td>Frequency Domain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diffuse with Alpha (RGBA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specular with Intensity (RGBA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roughness (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AO (G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRDF Blend (B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anisotropy (A)</td>
<td></td>
</tr>
<tr>
<td>Unreal 4.7</td>
<td>Lambert</td>
<td>GGX</td>
<td>Schlick-Smith</td>
<td>Schlick</td>
<td>α = Roughness</td>
<td>BaseColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Metallic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roughness</td>
<td>Toksvig ???</td>
</tr>
</tbody>
</table>

→ tl;dr: No single common parameter set
COMMON PARAMETER SET
CASE STUDY

Bad News
- No single common parameter set across engines

Good News
- Frequently used common terms / material properties (Metallic, Specular, Roughness, Smoothness, …)
- Used shading models are very similar
SHADING MODEL
HOW TO IMPLEMENT PBR?

- Common Model: Microfacet model (Cook-Torrance)
 - Specular (reflected) part via terms D/F/G
 - Diffuse part models scattering effects

- Various approximations in use
 - Lambert, Oren-Nayar, … for Diffuse,
 GGX, Beckmann, … for Specular D, …

- Don‘t enforce a particular approximation,
 but provide a useable material parameter set.
PROPOSAL: TWO PARAMETER SETS
SPECULAR-GLOSSINESS & METAL-ROUGHNESS

Diffuse + Specular + Glossiness =

BaseColor + Metallic + Roughness =
"materials": {
 "gold": {
 "extensions": {
 "FRAUNHOFER_materials_pbr": {
 "technique": "PBR_metal_roughness",
 "values": {
 "baseColorFactor": [1.00, 0.71, 0.29],
 "metallicFactor": 1.0,
 "roughnessFactor": 0.2
 }
 }
 }
 }
}
GLTF EXTENSION
PROPOSAL ON GITHUB

Document / Fork
https://github.com/tsturm/glTF/tree/master/extensions/Vendor/FRAUNHOFER_materials_pbr

Pull Request
https://github.com/KhronosGroup/glTF/pull/643

Our framework
http://instant3dhub.org
THANKS FOR YOUR ATTENTION!