C Specification

To dispatch ray tracing use:

// Provided by VK_NV_ray_tracing
void vkCmdTraceRaysNV(
    VkCommandBuffer                             commandBuffer,
    VkBuffer                                    raygenShaderBindingTableBuffer,
    VkDeviceSize                                raygenShaderBindingOffset,
    VkBuffer                                    missShaderBindingTableBuffer,
    VkDeviceSize                                missShaderBindingOffset,
    VkDeviceSize                                missShaderBindingStride,
    VkBuffer                                    hitShaderBindingTableBuffer,
    VkDeviceSize                                hitShaderBindingOffset,
    VkDeviceSize                                hitShaderBindingStride,
    VkBuffer                                    callableShaderBindingTableBuffer,
    VkDeviceSize                                callableShaderBindingOffset,
    VkDeviceSize                                callableShaderBindingStride,
    uint32_t                                    width,
    uint32_t                                    height,
    uint32_t                                    depth);

Parameters

  • commandBuffer is the command buffer into which the command will be recorded.

  • raygenShaderBindingTableBuffer is the buffer object that holds the shader binding table data for the ray generation shader stage.

  • raygenShaderBindingOffset is the offset in bytes (relative to raygenShaderBindingTableBuffer) of the ray generation shader being used for the trace.

  • missShaderBindingTableBuffer is the buffer object that holds the shader binding table data for the miss shader stage.

  • missShaderBindingOffset is the offset in bytes (relative to missShaderBindingTableBuffer) of the miss shader being used for the trace.

  • missShaderBindingStride is the size in bytes of each shader binding table record in missShaderBindingTableBuffer.

  • hitShaderBindingTableBuffer is the buffer object that holds the shader binding table data for the hit shader stages.

  • hitShaderBindingOffset is the offset in bytes (relative to hitShaderBindingTableBuffer) of the hit shader group being used for the trace.

  • hitShaderBindingStride is the size in bytes of each shader binding table record in hitShaderBindingTableBuffer.

  • callableShaderBindingTableBuffer is the buffer object that holds the shader binding table data for the callable shader stage.

  • callableShaderBindingOffset is the offset in bytes (relative to callableShaderBindingTableBuffer) of the callable shader being used for the trace.

  • callableShaderBindingStride is the size in bytes of each shader binding table record in callableShaderBindingTableBuffer.

  • width is the width of the ray trace query dimensions.

  • height is height of the ray trace query dimensions.

  • depth is depth of the ray trace query dimensions.

Description

When the command is executed, a ray generation group of width × height × depth rays is assembled.

Valid Usage
  • VUID-vkCmdTraceRaysNV-magFilter-04553
    If a VkSampler created with magFilter or minFilter equal to VK_FILTER_LINEAR and compareEnable equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

  • VUID-vkCmdTraceRaysNV-mipmapMode-04770
    If a VkSampler created with mipmapMode equal to VK_SAMPLER_MIPMAP_MODE_LINEAR and compareEnable equal to VK_FALSE is used to sample a VkImageView as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT

  • VUID-vkCmdTraceRaysNV-None-02691
    If a VkImageView is accessed using atomic operations as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT

  • VUID-vkCmdTraceRaysNV-None-02692
    If a VkImageView is sampled with VK_FILTER_CUBIC_EXT as a result of this command, then the image view’s format features must contain VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_EXT

  • VUID-vkCmdTraceRaysNV-filterCubic-02694
    Any VkImageView being sampled with VK_FILTER_CUBIC_EXT as a result of this command must have a VkImageViewType and format that supports cubic filtering, as specified by VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubic returned by vkGetPhysicalDeviceImageFormatProperties2

  • VUID-vkCmdTraceRaysNV-filterCubicMinmax-02695
    Any VkImageView being sampled with VK_FILTER_CUBIC_EXT with a reduction mode of either VK_SAMPLER_REDUCTION_MODE_MIN or VK_SAMPLER_REDUCTION_MODE_MAX as a result of this command must have a VkImageViewType and format that supports cubic filtering together with minmax filtering, as specified by VkFilterCubicImageViewImageFormatPropertiesEXT::filterCubicMinmax returned by vkGetPhysicalDeviceImageFormatProperties2

  • VUID-vkCmdTraceRaysNV-flags-02696
    Any VkImage created with a VkImageCreateInfo::flags containing VK_IMAGE_CREATE_CORNER_SAMPLED_BIT_NV sampled as a result of this command must only be sampled using a VkSamplerAddressMode of VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE

  • VUID-vkCmdTraceRaysNV-None-02697
    For each set n that is statically used by the VkPipeline bound to the pipeline bind point used by this command, a descriptor set must have been bound to n at the same pipeline bind point, with a VkPipelineLayout that is compatible for set n, with the VkPipelineLayout used to create the current VkPipeline, as described in [descriptorsets-compatibility]

  • VUID-vkCmdTraceRaysNV-None-02698
    For each push constant that is statically used by the VkPipeline bound to the pipeline bind point used by this command, a push constant value must have been set for the same pipeline bind point, with a VkPipelineLayout that is compatible for push constants, with the VkPipelineLayout used to create the current VkPipeline, as described in [descriptorsets-compatibility]

  • VUID-vkCmdTraceRaysNV-None-02699
    Descriptors in each bound descriptor set, specified via vkCmdBindDescriptorSets, must be valid if they are statically used by the VkPipeline bound to the pipeline bind point used by this command

  • VUID-vkCmdTraceRaysNV-None-02700
    A valid pipeline must be bound to the pipeline bind point used by this command

  • VUID-vkCmdTraceRaysNV-commandBuffer-02701
    If the VkPipeline object bound to the pipeline bind point used by this command requires any dynamic state, that state must have been set or inherited for commandBuffer, and done so after any previously bound pipeline with the corresponding state not specified as dynamic

  • VUID-vkCmdTraceRaysNV-None-02859
    There must not have been any calls to dynamic state setting commands for any state not specified as dynamic in the VkPipeline object bound to the pipeline bind point used by this command, since that pipeline was bound

  • VUID-vkCmdTraceRaysNV-None-02702
    If the VkPipeline object bound to the pipeline bind point used by this command accesses a VkSampler object that uses unnormalized coordinates, that sampler must not be used to sample from any VkImage with a VkImageView of the type VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, in any shader stage

  • VUID-vkCmdTraceRaysNV-None-02703
    If the VkPipeline object bound to the pipeline bind point used by this command accesses a VkSampler object that uses unnormalized coordinates, that sampler must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions with ImplicitLod, Dref or Proj in their name, in any shader stage

  • VUID-vkCmdTraceRaysNV-None-02704
    If the VkPipeline object bound to the pipeline bind point used by this command accesses a VkSampler object that uses unnormalized coordinates, that sampler must not be used with any of the SPIR-V OpImageSample* or OpImageSparseSample* instructions that includes a LOD bias or any offset values, in any shader stage

  • VUID-vkCmdTraceRaysNV-None-02705
    If the robust buffer access feature is not enabled, and if the VkPipeline object bound to the pipeline bind point used by this command accesses a uniform buffer, it must not access values outside of the range of the buffer as specified in the descriptor set bound to the same pipeline bind point

  • VUID-vkCmdTraceRaysNV-None-02706
    If the robust buffer access feature is not enabled, and if the VkPipeline object bound to the pipeline bind point used by this command accesses a storage buffer, it must not access values outside of the range of the buffer as specified in the descriptor set bound to the same pipeline bind point

  • VUID-vkCmdTraceRaysNV-commandBuffer-02707
    If commandBuffer is an unprotected command buffer, any resource accessed by the VkPipeline object bound to the pipeline bind point used by this command must not be a protected resource

  • VUID-vkCmdTraceRaysNV-None-04115
    If a VkImageView is accessed using OpImageWrite as a result of this command, then the Type of the Texel operand of that instruction must have at least as many components as the image view’s format.

  • VUID-vkCmdTraceRaysNV-OpImageWrite-04469
    If a VkBufferView is accessed using OpImageWrite as a result of this command, then the Type of the Texel operand of that instruction must have at least as many components as the buffer view’s format.

  • VUID-vkCmdTraceRaysNV-SampledType-04470
    If a VkImageView with a VkFormat that has a 64-bit channel width is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 64.

  • VUID-vkCmdTraceRaysNV-SampledType-04471
    If a VkImageView with a VkFormat that has a channel width less than 64-bit is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 32.

  • VUID-vkCmdTraceRaysNV-SampledType-04472
    If a VkBufferView with a VkFormat that has a 64-bit channel width is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 64.

  • VUID-vkCmdTraceRaysNV-SampledType-04473
    If a VkBufferView with a VkFormat that has a channel width less than 64-bit is accessed as a result of this command, the SampledType of the OpTypeImage operand of that instruction must have a Width of 32.

  • VUID-vkCmdTraceRaysNV-sparseImageInt64Atomics-04474
    If the sparseImageInt64Atomics feature is not enabled, VkImage objects created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions through an OpTypeImage with a SampledType with a Width of 64 by this command.

  • VUID-vkCmdTraceRaysNV-sparseImageInt64Atomics-04475
    If the sparseImageInt64Atomics feature is not enabled, VkBuffer objects created with the VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT flag must not be accessed by atomic instructions through an OpTypeImage with a SampledType with a Width of 64 by this command.

  • VUID-vkCmdTraceRaysNV-None-03429
    Any shader group handle referenced by this call must have been queried from the currently bound ray tracing pipeline

  • VUID-vkCmdTraceRaysNV-commandBuffer-04624
    commandBuffer must not be a protected command buffer

  • VUID-vkCmdTraceRaysNV-maxRecursionDepth-03625
    This command must not cause a trace ray instruction to be executed from a shader invocation with a recursion depth greater than the value of maxRecursionDepth used to create the bound ray tracing pipeline

  • VUID-vkCmdTraceRaysNV-raygenShaderBindingTableBuffer-04042
    If raygenShaderBindingTableBuffer is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysNV-raygenShaderBindingOffset-02455
    raygenShaderBindingOffset must be less than the size of raygenShaderBindingTableBuffer

  • VUID-vkCmdTraceRaysNV-raygenShaderBindingOffset-02456
    raygenShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysNV-missShaderBindingTableBuffer-04043
    If missShaderBindingTableBuffer is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysNV-missShaderBindingOffset-02457
    missShaderBindingOffset must be less than the size of missShaderBindingTableBuffer

  • VUID-vkCmdTraceRaysNV-missShaderBindingOffset-02458
    missShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysNV-hitShaderBindingTableBuffer-04044
    If hitShaderBindingTableBuffer is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysNV-hitShaderBindingOffset-02459
    hitShaderBindingOffset must be less than the size of hitShaderBindingTableBuffer

  • VUID-vkCmdTraceRaysNV-hitShaderBindingOffset-02460
    hitShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysNV-callableShaderBindingTableBuffer-04045
    If callableShaderBindingTableBuffer is non-sparse then it must be bound completely and contiguously to a single VkDeviceMemory object

  • VUID-vkCmdTraceRaysNV-callableShaderBindingOffset-02461
    callableShaderBindingOffset must be less than the size of callableShaderBindingTableBuffer

  • VUID-vkCmdTraceRaysNV-callableShaderBindingOffset-02462
    callableShaderBindingOffset must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupBaseAlignment

  • VUID-vkCmdTraceRaysNV-missShaderBindingStride-02463
    missShaderBindingStride must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupHandleSize

  • VUID-vkCmdTraceRaysNV-hitShaderBindingStride-02464
    hitShaderBindingStride must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupHandleSize

  • VUID-vkCmdTraceRaysNV-callableShaderBindingStride-02465
    callableShaderBindingStride must be a multiple of VkPhysicalDeviceRayTracingPropertiesNV::shaderGroupHandleSize

  • VUID-vkCmdTraceRaysNV-missShaderBindingStride-02466
    missShaderBindingStride must be less than or equal to VkPhysicalDeviceRayTracingPropertiesNV::maxShaderGroupStride

  • VUID-vkCmdTraceRaysNV-hitShaderBindingStride-02467
    hitShaderBindingStride must be less than or equal to VkPhysicalDeviceRayTracingPropertiesNV::maxShaderGroupStride

  • VUID-vkCmdTraceRaysNV-callableShaderBindingStride-02468
    callableShaderBindingStride must be less than or equal to VkPhysicalDeviceRayTracingPropertiesNV::maxShaderGroupStride

  • VUID-vkCmdTraceRaysNV-width-02469
    width must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[0]

  • VUID-vkCmdTraceRaysNV-height-02470
    height must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[1]

  • VUID-vkCmdTraceRaysNV-depth-02471
    depth must be less than or equal to VkPhysicalDeviceLimits::maxComputeWorkGroupCount[2]

Valid Usage (Implicit)
  • VUID-vkCmdTraceRaysNV-commandBuffer-parameter
    commandBuffer must be a valid VkCommandBuffer handle

  • VUID-vkCmdTraceRaysNV-raygenShaderBindingTableBuffer-parameter
    raygenShaderBindingTableBuffer must be a valid VkBuffer handle

  • VUID-vkCmdTraceRaysNV-missShaderBindingTableBuffer-parameter
    If missShaderBindingTableBuffer is not VK_NULL_HANDLE, missShaderBindingTableBuffer must be a valid VkBuffer handle

  • VUID-vkCmdTraceRaysNV-hitShaderBindingTableBuffer-parameter
    If hitShaderBindingTableBuffer is not VK_NULL_HANDLE, hitShaderBindingTableBuffer must be a valid VkBuffer handle

  • VUID-vkCmdTraceRaysNV-callableShaderBindingTableBuffer-parameter
    If callableShaderBindingTableBuffer is not VK_NULL_HANDLE, callableShaderBindingTableBuffer must be a valid VkBuffer handle

  • VUID-vkCmdTraceRaysNV-commandBuffer-recording
    commandBuffer must be in the recording state

  • VUID-vkCmdTraceRaysNV-commandBuffer-cmdpool
    The VkCommandPool that commandBuffer was allocated from must support compute operations

  • VUID-vkCmdTraceRaysNV-renderpass
    This command must only be called outside of a render pass instance

  • VUID-vkCmdTraceRaysNV-commonparent
    Each of callableShaderBindingTableBuffer, commandBuffer, hitShaderBindingTableBuffer, missShaderBindingTableBuffer, and raygenShaderBindingTableBuffer that are valid handles of non-ignored parameters must have been created, allocated, or retrieved from the same VkDevice

Host Synchronization
  • Host access to commandBuffer must be externally synchronized

  • Host access to the VkCommandPool that commandBuffer was allocated from must be externally synchronized

Command Properties
Command Buffer Levels Render Pass Scope Supported Queue Types Pipeline Type

Primary
Secondary

Outside

Compute

See Also

VkBuffer, VkCommandBuffer, VkDeviceSize

Document Notes

For more information, see the Vulkan Specification

This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.

Copyright 2014-2021 The Khronos Group Inc.

SPDX-License-Identifier: CC-BY-4.0