C Specification

The VkMemoryAllocateInfo structure is defined as:

// Provided by VK_VERSION_1_0
typedef struct VkMemoryAllocateInfo {
    VkStructureType    sType;
    const void*        pNext;
    VkDeviceSize       allocationSize;
    uint32_t           memoryTypeIndex;
} VkMemoryAllocateInfo;

Members

  • sType is the type of this structure.

  • pNext is NULL or a pointer to a structure extending this structure.

  • allocationSize is the size of the allocation in bytes

  • memoryTypeIndex is an index identifying a memory type from the memoryTypes array of the VkPhysicalDeviceMemoryProperties structure

Description

A VkMemoryAllocateInfo structure defines a memory import operation if its pNext chain includes one of the following structures:

Importing memory must not modify the content of the memory. Implementations must ensure that importing memory does not enable the importing Vulkan instance to access any memory or resources in other Vulkan instances other than that corresponding to the memory object imported. Implementations must also ensure accessing imported memory which has not been initialized does not allow the importing Vulkan instance to obtain data from the exporting Vulkan instance or vice-versa.

Note

How exported and imported memory is isolated is left to the implementation, but applications should be aware that such isolation may prevent implementations from placing multiple exportable memory objects in the same physical or virtual page. Hence, applications should avoid creating many small external memory objects whenever possible.

When performing a memory import operation, it is the responsibility of the application to ensure the external handles meet all valid usage requirements. However, implementations must perform sufficient validation of external handles to ensure that the operation results in a valid memory object which will not cause program termination, device loss, queue stalls, or corruption of other resources when used as allowed according to its allocation parameters. If the external handle provided does not meet these requirements, the implementation must fail the memory import operation with the error code VK_ERROR_INVALID_EXTERNAL_HANDLE.

Valid Usage
  • If the pNext chain includes a VkExportMemoryAllocateInfo structure, and any of the handle types specified in VkExportMemoryAllocateInfo::handleTypes require a dedicated allocation, as reported by vkGetPhysicalDeviceImageFormatProperties2 in VkExternalImageFormatProperties::externalMemoryProperties.externalMemoryFeatures or VkExternalBufferProperties::externalMemoryProperties.externalMemoryFeatures, the pNext chain must include a VkMemoryDedicatedAllocateInfo or VkDedicatedAllocationMemoryAllocateInfoNV structure with either its image or buffer member set to a value other than VK_NULL_HANDLE.

  • If the pNext chain includes a VkExportMemoryAllocateInfo structure, it must not include a VkExportMemoryAllocateInfoNV or VkExportMemoryWin32HandleInfoNV structure

  • If the pNext chain includes a VkImportMemoryWin32HandleInfoKHR structure, it must not include a VkImportMemoryWin32HandleInfoNV structure

  • If the parameters define an import operation, the external handle specified was created by the Vulkan API, and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR, then the values of allocationSize and memoryTypeIndex must match those specified when the memory object being imported was created

  • If the parameters define an import operation and the external handle specified was created by the Vulkan API, the device mask specified by VkMemoryAllocateFlagsInfo must match that specified when the memory object being imported was allocated

  • If the parameters define an import operation and the external handle specified was created by the Vulkan API, the list of physical devices that comprise the logical device passed to vkAllocateMemory must match the list of physical devices that comprise the logical device on which the memory was originally allocated

  • If the parameters define an import operation and the external handle is an NT handle or a global share handle created outside of the Vulkan API, the value of memoryTypeIndex must be one of those returned by vkGetMemoryWin32HandlePropertiesKHR

  • If the parameters define an import operation, the external handle was created by the Vulkan API, and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR or VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR, then the values of allocationSize and memoryTypeIndex must match those specified when the memory object being imported was created

  • If the parameters define an import operation and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT, VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT, or VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT, allocationSize must match the size reported in the memory requirements of the image or buffer member of the VkDedicatedAllocationMemoryAllocateInfoNV structure included in the pNext chain

  • If the parameters define an import operation and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT, allocationSize must match the size specified when creating the Direct3D 12 heap from which the external handle was extracted

  • If the parameters define an import operation and the external handle is a POSIX file descriptor created outside of the Vulkan API, the value of memoryTypeIndex must be one of those returned by vkGetMemoryFdPropertiesKHR

  • If the protected memory feature is not enabled, the VkMemoryAllocateInfo::memoryTypeIndex must not indicate a memory type that reports VK_MEMORY_PROPERTY_PROTECTED_BIT

  • If the parameters define an import operation and the external handle is a host pointer, the value of memoryTypeIndex must be one of those returned by vkGetMemoryHostPointerPropertiesEXT

  • If the parameters define an import operation and the external handle is a host pointer, allocationSize must be an integer multiple of VkPhysicalDeviceExternalMemoryHostPropertiesEXT::minImportedHostPointerAlignment

  • If the parameters define an import operation and the external handle is a host pointer, the pNext chain must not include a VkDedicatedAllocationMemoryAllocateInfoNV structure with either its image or buffer field set to a value other than VK_NULL_HANDLE

  • If the parameters define an import operation and the external handle is a host pointer, the pNext chain must not include a VkMemoryDedicatedAllocateInfo structure with either its image or buffer field set to a value other than VK_NULL_HANDLE

  • If the parameters define an import operation and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, allocationSize must be the size returned by vkGetAndroidHardwareBufferPropertiesANDROID for the Android hardware buffer

  • If the parameters define an import operation and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, and the pNext chain does not include a VkMemoryDedicatedAllocateInfo structure or VkMemoryDedicatedAllocateInfo::image is VK_NULL_HANDLE, the Android hardware buffer must have a AHardwareBuffer_Desc::format of AHARDWAREBUFFER_FORMAT_BLOB and a AHardwareBuffer_Desc::usage that includes AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER

  • If the parameters define an import operation and the external handle type is VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID, memoryTypeIndex must be one of those returned by vkGetAndroidHardwareBufferPropertiesANDROID for the Android hardware buffer

  • If the parameters do not define an import operation, and the pNext chain includes a VkExportMemoryAllocateInfo structure with VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID included in its handleTypes member, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with image not equal to VK_NULL_HANDLE, then allocationSize must be 0, otherwise allocationSize must be greater than 0

  • If the parameters define an import operation, the external handle is an Android hardware buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo with image that is not VK_NULL_HANDLE, the Android hardware buffer’s AHardwareBuffer::usage must include at least one of AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER or AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE

  • If the parameters define an import operation, the external handle is an Android hardware buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo with image that is not VK_NULL_HANDLE, the format of image must be VK_FORMAT_UNDEFINED or the format returned by vkGetAndroidHardwareBufferPropertiesANDROID in VkAndroidHardwareBufferFormatPropertiesANDROID::format for the Android hardware buffer

  • If the parameters define an import operation, the external handle is an Android hardware buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with image that is not VK_NULL_HANDLE, the width, height, and array layer dimensions of image and the Android hardware buffer’s AHardwareBuffer_Desc must be identical

  • If the parameters define an import operation, the external handle is an Android hardware buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with image that is not VK_NULL_HANDLE, and the Android hardware buffer’s AHardwareBuffer::usage includes AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE, the image must have a complete mipmap chain

  • If the parameters define an import operation, the external handle is an Android hardware buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with image that is not VK_NULL_HANDLE, and the Android hardware buffer’s AHardwareBuffer::usage does not include AHARDWAREBUFFER_USAGE_GPU_MIPMAP_COMPLETE, the image must have exactly one mipmap level

  • If the parameters define an import operation, the external handle is an Android hardware buffer, and the pNext chain includes a VkMemoryDedicatedAllocateInfo structure with image that is not VK_NULL_HANDLE, each bit set in the usage of image must be listed in AHardwareBuffer Usage Equivalence, and if there is a corresponding AHARDWAREBUFFER_USAGE bit listed that bit must be included in the Android hardware buffer’s AHardwareBuffer_Desc::usage

  • If VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress is not zero, VkMemoryAllocateFlagsInfo::flags must include VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT

  • If VkMemoryAllocateFlagsInfo::flags includes VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT, the bufferDeviceAddressCaptureReplay feature must be enabled

  • If VkMemoryAllocateFlagsInfo::flags includes VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT, the bufferDeviceAddress feature must be enabled

  • If the pNext chain includes a VkImportMemoryHostPointerInfoEXT structure, VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress must be zero

  • If the parameters define an import operation, VkMemoryOpaqueCaptureAddressAllocateInfo::opaqueCaptureAddress must be zero

Valid Usage (Implicit)

See Also

Document Notes

For more information, see the Vulkan Specification

This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.

Copyright (c) 2014-2020 The Khronos Group Inc.

SPDX-License-Identifier: CC-BY-4.0