GLAPI/glBlendFunc

From OpenGL Wiki
< GLAPI
Revision as of 08:06, 27 August 2012 by Kopelrativ (talk | contribs) (→‎Description: Clamping only for non-float-point or non-integral)
Jump to navigation Jump to search
glBlendFunc
Core in version 4.6
Core since version 1.0

glBlendFunc: specify pixel arithmetic

Function Definition

 void glBlendFunc(GLenum sfactor​, GLenum dfactor​);
 void glBlendFunci(GLuint buf​, GLenum sfactor​, GLenum dfactor​);
buf
For glBlendFunci, specifies the index of the draw buffer for which to set the blend function.
sfactor
Specifies how the red, green, blue, and alpha source blending factors are computed. The initial value is GL_ONE.
dfactor
Specifies how the red, green, blue, and alpha destination blending factors are computed. The following symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA. GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, and GL_ONE_MINUS_CONSTANT_ALPHA. The initial value is GL_ZERO.

Description

Pixels can be drawn using a function that blends the incoming (source) RGBA values with the RGBA values that are already in the frame buffer (the destination values). Blending is initially disabled. Use glEnable and glDisable with argument GL_BLEND to enable and disable blending.

glBlendFunc defines the operation of blending for all draw buffers when it is enabled. glBlendFunci defines the operation of blending for a single draw buffer specified by buf​ when enabled for that draw buffer. sfactor​ specifies which method is used to scale the source color components. dfactor​ specifies which method is used to scale the destination color components. Both parameters must be one of the following symbolic constants: GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA, GL_SRC_ALPHA_SATURATE, GL_SRC1_COLOR, GL_ONE_MINUS_SRC1_COLOR, GL_SRC1_ALPHA, and GL_ONE_MINUS_SRC1_ALPHA. The possible methods are described in the following table. Each method defines four scale factors, one each for red, green, blue, and alpha. In the table and in subsequent equations, first source, second source and destination color components are referred to as , and , respectively. The color specified by glBlendColor is referred to as . They are understood to have integer values between 0 and , where

and are the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as and . The scale factors described in the table, denoted , represent either source or destination factors. The scale factors have range [0, 1] if the source or target are neither float-point nor integral.

Parameter
GL_ZERO
GL_ONE
GL_SRC_COLOR
GL_ONE_MINUS_SRC_COLOR
GL_DST_COLOR
GL_ONE_MINUS_DST_COLOR
GL_SRC_ALPHA
GL_ONE_MINUS_SRC_ALPHA
GL_DST_ALPHA
GL_ONE_MINUS_DST_ALPHA
GL_CONSTANT_COLOR
GL_ONE_MINUS_CONSTANT_COLOR
GL_CONSTANT_ALPHA
GL_ONE_MINUS_CONSTANT_ALPHA
GL_SRC_ALPHA_SATURATE
GL_SRC1_COLOR
GL_ONE_MINUS_SRC1_COLOR
GL_SRC1_ALPHA
GL_ONE_MINUS_SRC1_ALPHA

In the table,

To determine the blended RGBA values of a pixel, the system uses the following equations:

Despite the apparent precision of the above equations, blending arithmetic is not exactly specified, because blending operates with imprecise integer color values. However, a blend factor that should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0 reduces its multiplicand to 0. For example, when sfactor is GL_SRC_ALPHA, dfactor is GL_ONE_MINUS_SRC_ALPHA, and is equal to , the equations reduce to simple replacement:

Examples

Transparency is best implemented using blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this transparency calculation does not require the presence of alpha bitplanes in the frame buffer.

Blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for rendering antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using blend function (GL_SRC_ALPHA_SATURATE, GL_ONE) with polygons sorted from nearest to farthest. (See the glEnable, glDisable reference page and the GL_POLYGON_SMOOTH argument for information on polygon antialiasing.) Destination alpha bitplanes, which must be present for this blend function to operate correctly, store the accumulated coverage.

Notes

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (), representing complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, the GL performs blending separately for each enabled buffer, using the contents of that buffer for destination color. (See glDrawBuffer.)

When dual source blending is enabled (i.e., one of the blend factors requiring the second color input is used), the maximum number of enabled draw buffers is given by GL_MAX_DUAL_SOURCE_DRAW_BUFFERS, which may be lower than GL_MAX_DRAW_BUFFERS.

Errors

GL_INVALID_ENUM is generated if either sfactor​ or dfactor​ is not an accepted value.

GL_INVALID_VALUE is generated by glBlendFunci if buf​ is greater than or equal to the value of GL_MAX_DRAW_BUFFERS.

Associated Gets

glGet with argument GL_BLEND_SRC

glGet with argument GL_BLEND_DST

glIsEnabled with argument GL_BLEND


See Also

glBlendColor, glBlendEquation, glBlendFuncSeparate, glClear, glDrawBuffer, glEnable, glLogicOp, glStencilFunc

Copyright

Copyright © 1991-2006 Silicon Graphics, Inc. This document is licensed under the SGI Free Software B License. For details, see http://oss.sgi.com/projects/FreeB/.