Press Releases

The Khronos™ Group today announced the ratification and release of the EGL™ 1.5 specification. EGL is an open, royalty-free standard that defines a portable interface to underlying operating system and display platforms to handle graphics context management, surface and buffer binding, and rendering synchronization. EGL also provides interop capability to enable efficient transfer of data and events between Khronos APIs. The new EGL 1.5 specification incorporates functionality for enhanced rendering flexibility and security, improved interop between OpenGL® or OpenGL ES™ and OpenCL™ for mixed compute and rendering acceleration, and standardized support for multiple common operating systems including Android and 64-bit platforms.

The Khronos™ Group today announced the ratification and public release of the WebCL™ 1.0 specification. Developed in close cooperation with the Web community, WebCL extends the capabilities of HTML5 browsers by enabling developers to offload computationally intensive processing to available computational resources such as multicore CPUs and GPUs. WebCL defines JavaScript bindings to OpenCL™ APIs that enable Web applications to compile OpenCL C kernels and manage their parallel execution. Like WebGL™, WebCL is expected to enable a rich ecosystem of JavaScript middleware that provides access to accelerated functionality to a wide diversity of Web developers.

March 19, 2014 – San Francisco, Game Developer’s Conference – The Khronos™ Group today announced the release of SYCL™ 1.2 as a provisional specification to enable community feedback. SYCL is a royalty-free, cross-platform abstraction layer that enables the development of applications and frameworks that build on the underlying concepts, portability and efficiency of OpenCL™, while adding the ease-of-use and flexibility of C++. For example, SYCL can provide single source development where C++ template functions can contain both host and device code to construct complex algorithms that use OpenCL acceleration - and then enable re-use of those templates throughout the source code of an application to operate on different types of data.

The Khronos™ Group today announced the immediate release of the OpenGL® ES 3.1 specification, bringing significant functionality enhancements to the industry-leading, royalty-free 3D graphics API that is used on nearly all of the world’s mobile devices. OpenGL ES 3.1 provides access to state-of-the-art graphics processing unit (GPU) functionality with portability across diverse mobile and embedded operating systems and platforms.

The Khronos Group today announced the ratification and public release of the SPIR 1.2 specification that provides a non-source encoding, and binary level portability, for OpenCL™ 1.2 device programs. SPIR (Standard Portable Intermediate Representation) is the industry's first open, cross-platform Intermediate Representation standard for portable heterogeneous parallel computing and is based on LLVM IR. SPIR enables developers to avoid exposing sensitive kernel source and enables a diversity of language front-ends to easily target OpenCL platforms and devices in addition to OpenCL C. The SPIR specification and registry can be found in the Khronos Registry.

The Khronos™ Group today announced the ratification and public release of the finalized OpenCL™ 2.0 specification. OpenCL 2.0 is a significant evolution of the open, royalty-free standard that simplifies cross-platform, parallel programming. With an enhanced execution model and a subset of the C11 and C++11 memory model, synchronization and atomic operations, OpenCL now enables a significantly richer range of algorithms and programming patterns to be easily accelerated with improved performance. Significant feedback from the developer community was incorporated into the final specification, following its provisional release in July.

The Khronos Group today announced the ratification and public release of the OpenVX 1.0 provisional specification, an open, royalty-free standard for cross platform acceleration of computer vision applications and libraries. OpenVX enables performance and power optimized computer vision algorithms for use cases such as face, body and gesture tracking, smart video surveillance, automatic driver assistance systems, object and scene reconstruction, augmented reality, visual inspection, robotics and more. The provisional release of the specification enables developers and implementers to provide feedback before specification finalization, which is expected within six months.