
Page 1glTF 2.0 Quick Reference Guide

Rev. 0717www.khronos.org/gltf

glTF was designed and specified by the Khronos

Group, for the efficient transfer of 3D content

over networks.

glTF and the glTF logo

are trademarks of the

Khronos Group Inc.

Further resources
The Khronos glTF landing page:

 https://www.khronos.org/gltf

The Khronos glTF GitHub repository:

 https://github.com/KhronosGroup/glTF

glTF - what the ?
An overview of the basics of
the GL Transmission Format

The core of glTF is a JSON file that describes the
structure and composition of a scene containing
3D models. The top-level elements of this file are:

These elements are contained in arrays. References
between the objects are established by using their
indices to look up the objects in the arrays.

©2016-2017 Marco Hutter
 www.marco-hutter.de

 Feedback:
gltf@marco-hutter.de

 Version 2.0
 glTF version 2.0

For glTF 2.0!

This overview is
non-normative!

It is also possible to store the whole asset in a single
binary glTF file. In this case, the JSON data is stored
as a string, followed by the binary data of buffers
or images.

scenes, nodes
 Basic structure of the scene

meshes
 Geometry of 3D objects

materials
 Definitions of how objects should be rendered

skins
 Information for vertex skinning

animations
 Changes of properties over time

cameras
 View configurations for the scene

textures, images, samplers
 Surface appearance of objects

buffers, bufferViews, accessors
 Data references and data layout descriptions

bufferView

buffer

accessor

mesh

node

scene

skincamera

animationmaterial

texture

sampler image

Concepts

Binary data references
The images and buffers of a glTF asset may refer to
external files that contain the data that are required
for rendering the 3D content:

The data is referred to via URIs, but can also be
included directly in the JSON using data URIs. The
data URI defines the MIME type, and contains the
data as a base64 encoded string:

"buffers": [
 {
 "uri": "buffer01.bin"
 "byteLength": 102040,
 }
],
"images": [
 {
 "uri": "image01.png"
 }
],

"data:application/gltf-buffer;base64,AAABAAIAAgA..."

"..."

Buffer data:

Image data (PNG):

The buffers refer to binary
files (.BIN) that contain
geometry- or animation
data.

The images refer to image
files (PNG, JPG...) that
contain texture data for
the models.

The conceptual relationships between the top-level
elements of a glTF asset are shown here:

Page 2 glTF 2.0 Quick Reference Guide

Rev. 0717 www.khronos.org/gltf

meshes

"meshes": [
 {
 "primitives": [
 {
 "mode": 4,
 "indices": 0,
 "attributes": {
 "POSITION": 1,
 "NORMAL": 2
 },
 "material": 2
 }
]
 }
],

The meshes may contain multiple mesh primitives.

These refer to the geometry data that is required

for rendering the mesh.

Each mesh primitive has a

rendering mode, which is

a constant indicating whether

it should be rendered as

POINTS, LINES, or TRIANGLES.
The primitive also refers to

indices and the attributes
of the vertices, using the

indices of the accessors for

this data. The material that

should be used for rendering

is also given, by the index of

the material.

{
 "primitives": [
 {
 ...
 "targets": [
 {
 "POSITION": 11,
 "NORMAL": 13
 },
 {
 "POSITION": 21,
 "NORMAL": 23
 }
]
 }
],
 "weights": [0, 0.5]
}

A mesh may define multiple morph targets. Such

a morph target describes a deformation of the

original mesh.

To define a mesh with morph

targets, each mesh primitive

can contain an array of

targets. These are dictionaries

that map names of attributes

to the indices of accessors that

contain the displacements of

the geometry for the target.

The mesh may also contain an

array of weights that define

the contribution of each morph

target to the final, rendered

state of the mesh.

Combining multiple morph targets with different

weights allows, for example, modeling different

facial expressions of a character: The weights can

be modified with an animation, to interpolate

between different states of the geometry.

Position:
Normal:

(1.2, -2.6, 4.3)
(0.0, 1.0, 0.0)

(2,7, -1.8, 6.2)
(0.71, 0.71, 0.0)

(...)
(...)

 2.7 -1.8 6.2 ...

 0.71 0.71 0.0 ...

POSITION 1.2 -2.6 4.3

 0.0 1.0 0.0NORMAL

Each attribute is defined by mapping the attribute
name to the index of the accessor that contains the
attribute data. This data will be used as the vertex
attributes when rendering the mesh. The attributes
may, for example, define the POSITION and the
NORMAL of the vertices:

A node may contain a local
transform. This can be given as
a column-major matrix array,
or with separate translation,
rotation and scale properties,
where the rotation is given as a
quaternion. The local transform
matrix is then computed as
 M = T * R * S
where T, R and S are the matrices
that are created from the
translation, rotation and scale.
The global transform of a node
is given by the product of all local
transforms on the path from the
root to the respective node.

scene 0

node 0 node 1 node 2

node 3 node 4

"nodes": [
 {
 "matrix": [
 1,0,0,0,
 0,1,0,0,
 0,0,1,0,
 5,6,7,1
],
 ...
 },
 {
 "translation":
 [0,0,0],
 "rotation":
 [0,0,0,1],
 "scale":
 [1,1,1]
 ...
 },
]

Each of the nodes can
contain an array of indices
of its children. This allows
modeling a simple scene
hierarchy:

scenes, nodes

"scene": 0,
"scenes": [
 {
 "nodes": [0, 1, 2]
 }
],
"nodes": [
 {
 "children": [3, 4],
 ...
 },
 { ... },
 { ... },
 { ... },
 { ... },
 ...
],

Each node may refer to a mesh or
a camera, using indices that point
into the meshes and cameras arrays.
These elements are then attached
to these nodes. During rendering,
instances of these elements are
created and transformed with the
global transform of the node.

The glTF JSON may contain scenes (with an optional
default scene). Each scene can contain an array of
indices of nodes.

"nodes": [
 {
 "mesh": 4,
 ...
 },
 {
 "camera": 2,
 ...
 },
]

Nodes are also used in vertex skinning: A node
hierarchy can define the skeleton of an animated
character. The node then refers to a mesh and to
a skin. The skin contains further information about
how the mesh is deformed based on the current
skeleton pose.

The translation, rotation and scale properties of a
node may also be the target of an animation: The
animation then describes how one property
changes over time. The attached objects will move
accordingly, allowing to model moving objects or
camera flights.

Page 3glTF 2.0 Quick Reference Guide

Rev. 0717www.khronos.org/gltf

buffers, bufferViews, accessors

"buffers": [
 {
 "byteLength": 35,
 "uri": "buffer01.bin"
 }
],

Each of the buffers refers
to a binary data file, using
a URI. It is the source of
one block of raw data with
the given byteLength.

"bufferViews": [
 {
 "buffer": 0,
 "byteOffset": 4,
 "byteLength": 28,
 "target": 34963
 }
],

Each of the bufferViews
refers to one buffer. It
has a byteOffset and a
byteLength, defining the
part of the buffer that
belongs to the bufferView,
and an optional OpenGL
buffer target.

"accessors": [
 {
 "bufferView": 0,
 "byteOffset": 4,
 "type": "VEC2",
 "componentType": 5126,
 "count": 2,
 "byteStride": 12,
 "min" : [0.1, 0.2]
 "max" : [0.9, 0.8]
 }
]

The accessors define how
the data of a bufferView is
interpreted. They may
define an additional
byeOffset referring to the
start of the bufferView,
and contain information
about the type and layout
of the bufferView data:

buffer
 byteLength = 35

bufferView
 byteOffset = 4
 byteLength = 28

0 4 8 1612 20 24 28 32

accessor
 byteOffset = 4

The buffer data is read from a file:

The bufferView defines a segment of the buffer data:

The accessor defines an additional offset:

The accessor defines a stride between the elements:

The accessor defines that the elements are 2D float vectors:

This data may, for example,
be used by a mesh primitive,
to access 2D texture
coordinates: The data of the
bufferView may be bound
as an OpenGL buffer, using
glBindBuffer. Then, the
properties of the accessor
may be used to define this
buffer as vertex attribute
data, by passing them to
glVertexAttribPointer
when the bufferView buffer
is bound.

 byteStride = 12

 type = "VEC2"
 componentType = GL_FLOAT x0 y0 x1 y1

4 8 1612 20 24 28 32

8 1612 20 24 28 32

8 1612 20 24 28

The buffers contain the data that is used for the
geometry of 3D models, animations, and skinning.
The bufferViews add structural information to this
data. The accessors define the exact type and
layout of the data.

The data may, for example, be defined as 2D vectors
of floating point values when the type is "VEC2"
and the componentType is GL_FLOAT (5126). The
byteStride says how many bytes are between the
start of one element and the start of the next,
which allows for accessors to define interleaved
data. The range of all values is stored in the min
and max property.

Sparse accessors

"accessors": [
 {
 "type": "SCALAR",
 "componentType": 5126,
 "count": 10,

 "sparse": {
 "count": 4,

 "values": {
 "bufferView": 2,
 },

 "indices": {
 "bufferView": 1,
 "componentType": 5123
 }
 }
 }
]

When only few elements of an accessor differ from
a default value (which is often the case for morph
targets), then the data can be given in a very
compact form using a sparse data description:

The sparse data block
contains the count of
sparse data elements.

The accessor defines the
type of the data (here,
scalar float values), and
the total element count.

The values refer to the
bufferView that contains
the sparse data values.
The target indices for
the sparse data values
are defined with a
reference to a
bufferView and the
componentType.

0.0 0.0 0.0 0.0 0.0 0.0

 1 4 5 7

4.3 9.1 5.2 2.7

0 1 2 3 4 5 6 7 8 9
4.3 9.1 5.2 2.7

values

indices

sparse (count=4)

Final accessor data with 10 float values

The values are written into the final accessor data,
at the positions that are given by the indices:

Page 5glTF 2.0 Quick Reference Guide

Rev. 0717www.khronos.org/gltf

cameras

"cameras": [
 {
 "type": "perspective",
 "perspective": {
 "aspectRatio": 1.5,
 "yfov": 0.65,
 "zfar": 100,
 "znear": 0.01
 }
 },
 {
 "type": "orthographic",
 "orthographic": {
 "xmag": 1.0,
 "ymag": 1.0,
 "zfar": 100,
 "znear": 0.01
 }
 }
]

Each of the nodes may refer to one of the cameras
that are defined in the glTF asset.

There are two types of
cameras: perspective
and orthographic
ones, and they define
the projection matrix.

The value for the far
clipping plane distance
of a perspective camera,
zfar, is optional. When
it is omitted, the camera
uses a special projection
matrix for infinite
projections.

textures, images, samplers

The texture consists of a
reference to the source of
the texture, which is one of
the images of the asset, and
a reference to a sampler.

"textures": [
 {
 "source": 4,
 "sampler": 2
 }
 ...
],

"images": [
 ...
 {
 "uri": "file01.png"
 }
 {
 "bufferView": 3,
 "mimeType" :
 "image/jpeg"
 }
],

The images define the image
data used for the texture.
This data can be given via
a URI that is the location of
an image file, or by a
reference to a bufferView
and a MIME type that
defines the type of the image
data that is stored in the
buffer view.

"samplers": [
 ...
 {
 "magFilter": 9729,
 "minFilter": 9987,
 "wrapS": 10497,
 "wrapT": 10497
 }
},

The samplers describe the
wrapping and scaling of
textures. (The constant
values correspond to
OpenGL constants that
can directly be passed to
glTexParameter).

The textures contain information about textures
that may be applied to rendered objects: Textures
are referred to by materials to define the basic
color of the objects, as well as physical properties
that affect the object appearance.

skins
A glTF asset may contain the information that is
necessary to perform vertex skinning. With vertex
skinning, it is possible to let the vertices of a mesh
be influenced by the bones of a skeleton, based on
its current pose.

"nodes": [
 {
 "name" :
 "Skinned mesh node",
 "mesh": 0
 "skin": 0,
 },
 ...
 {
 "name": "Torso",
 "children":
 [2, 3, 4, 5, 6]
 "rotation": [...],
 "scale": [...],
 "translation": [...]
 },
 ...
 {
 "name": "LegL",
 "children": [7],
 ...
 },
 ...
 {
 "name": "FootL",
 ...
 },
 ...
],

"skins": [
 {
 "inverseBindMatrices": 12,
 "joints": [1, 2, 3 ...]
 }
],

"meshes": [
 {
 "primitives": [
 {
 "attributes": {
 "POSITION": 0,
 "JOINTS_0": 1,
 "WEIGHTS_0": 2
 ...
 },
]
 }
],

Head

LegR LegL

ArmR ArmL

FootR FootL

Torso

The mesh primitives of a
skinned mesh contain the
POSITION attribute that
refers to the accessor for the
vertex positions, and two
special attributes that are
required for skinning:
A JOINTS_0 and a WEIGHTS_0
attribute, each referring to
an accessor.

The JOINTS_0 attribute data
contains the indices of the
joints that should affect the
vertex.

The WEIGHTS_0 attribute data
defines the weights indicating
how strongly the joint should
influence the vertex.

The skins contain an array
of joints, which are the
indices of nodes that define
the skeleton hierarchy, and
the inverseBindMatrices,
which is a a reference to an
accessor that contains one
matrix for each joint.

A node that refers to a mesh
may also refer to a skin.

The skeleton hierarchy is
modeled with nodes, just
like the scene structure:
Each joint node may have a
local transform and an array
of children, and the "bones"
of the skeleton are given
implicitly, as the connections
between the joints.

From this information, the
skinning matrix can be
computed.

This is explained in detail in
"Computing the skinning
matrix".

When one of the nodes refers to a camera, then
an instance of this camera is created. The camera
matrix of this instance is given by the global
transform matrix of the node.

Edit the
background color
only on the
Master A
Page!

Edit the
background color
only on the
Master A
Page!

Page 6 glTF 2.0 Quick Reference Guide

Rev. 0717 www.khronos.org/gltf

Wiki page about skinning in COLLADA: https://www.khronos.org/collada/wiki/Skinning
Section 4-7 in the COLLADA specification: https://www.khronos.org/files/collada_spec_1_5.pdf

Computing the skinning matrix
The skinning matrix describes how the vertices of a mesh are transformed based on the current pose of a
skeleton. The skinning matrix is a weighted combination of joint matrices.

For each node whose index appears in the joints of
the skin, a global transform matrix can be computed.
It transforms the mesh from the local space of the
joint, based on the current global transform of the
joint, and is called globalJointTransform.

jointMatrix[j] =
 inverse(globalTransform) *
 globalJointTransform[j] *
 inverseBindMatrix[j];

From these matrices, a jointMatrix may be
computed for each joint:

Any global transform of the node that contains
the mesh and the skin is cancelled out by
pre-multiplying the joint matrix with the inverse
of this transform.

The skin refers to the inverseBindMatrices. This
is an accessor which contains one inverse bind
matrix for each joint. Each of these matrices
transforms the mesh into the local space of the
joint.
inverseBindMatrix[1]

joint2

joint1

joint0

globalJointTransform[1]

joint2

joint1

joint0

Computing the joint matrices

For implementations based on OpenGL or WebGL,
the jointMatrix array will be passed to the
vertex shader as a uniform.

The primitives of a skinned mesh contain the POSITION,
JOINT and WEIGHT attributes, referring to accessors.
These accessors contain one element for each vertex:

Combining the joint matrices to create the skinning matrix

px py pz j0 j1 j2 j3 w0 w1 w2 w3

POSITION JOINTS_0 WEIGHTS_0

vertex 0:

px py pz j0 j1 j2 j3 w0 w1 w2 w3vertex n:

...

Vertex Shader
uniform mat4 u_jointMatrix[12];
attribute vec3 a_position;
attribute vec4 a_joint;
attribute vec4 a_weight;
...
void main(void) {
 ...
 mat4 skinMatrix =
 a_weight.x * u_jointMatrix[int(a_joint.x)] +
 a_weight.y * u_jointMatrix[int(a_joint.y)] +
 a_weight.z * u_jointMatrix[int(a_joint.z)] +
 a_weight.w * u_jointMatrix[int(a_joint.w)];
 gl_Position =
 modelViewProjection * skinMatrix * position;
}

a_weight.x
a_joint.x a_joint.y

joint1

joint2

joint0

a_weight.y

skinMatrix = 1.0 * jointMatrix[1] + 0.0 * jointMatrix[0] +...

skinMatrix = 0.75 * jointMatrix[1] + 0.25 * jointMatrix[0] +...

skinMatrix = 0.5 * jointMatrix[1] + 0.5 * jointMatrix[0] +...

skinMatrix = 0.25 * jointMatrix[1] + 0.75 * jointMatrix[0] +...

skinMatrix = 0.0 * jointMatrix[1] + 1.0 * jointMatrix[0] +...

The data of these accessors is passed as attributes to
the vertex shader, together with the jointMatrix array.

The skinMatrix
transforms the
vertices based on
the skeleton pose,
before they are
transformed with
the model-view-
perspective matrix.

In the vertex shader, the skinMatrix is computed. It is
a linear combination of the joint matrices whose indices
are contained in the JOINTS_0 attribute, weighted with
the WEIGHTS_0 values:

(The vertex skinning in COLLADA
is similar to that in glTF)

Page 7glTF 2.0 Quick Reference Guide

Rev. 0717www.khronos.org/gltf

animations

"animations": [
 {
 "channels": [
 {
 "target": {
 "node": 1,
 "path": "translation"
 },
 "sampler": 0
 }
],
 "samplers": [
 {
 "input": 4,
 "interpolation": "LINEAR",
 "output": 5
 }
]
 }
]

A glTF asset can contain animations. An animation can be applied to the properties of a node that define
the local transform of the node, or to the weights for the morph targets.

The sampler looks up the key frames for
the current time, in the input data.

0 1 2 3 4 5 6

Global time:

Each channel defines the target of the animation. This target usually
refers to a node, using the index of this node, and to a path, which
is the name of the animated property. The path may be "translation",
"rotation" or "scale", affecting the local transform of the node, or
"weights", in order to animate the weights of the morph targets of
the meshes that are referred to by the node. The channel also refers
to a sampler, which summarizes the actual animation data.

The data of the input accessor
of the animation sampler,
containing the key frame times

During the animation, a "global" animation time (in seconds) is advanced.

Each animation consists of two elements: An array of channels and an
array of samplers.

A sampler refers to the input and output data, using the indices of
accessors that provide the data. The input refers to an accessor with
scalar floating-point values, which are the times of the key frames of
the animation. The output refers to an accessor that contains the
values for the animated property at the respective key frames. The
sampler also defines an interpolation mode for the animation, which
may be "LINEAR", "STEP", "CATMULLROMSPLINE", or "CUBICSPLINE".

The data of the output accessor
of the animation sampler,
containing the key frame values
for the animated property

10.0

 5.0

-5.0

14.0

 3.0

-2.0

18.0

 1.0

 1.0

24.0

-1.0

 4.0

31.0

-3.0

 7.0

 0.0 0.8 1.6 2.4 3.2

Current time: 1.2

 16.0
 2.0
 -0.5

The corresponding values of the output
data are read, and interpolated based on
the interpolation mode of the sampler.

The interpolated value is forwarded
to the animation channel target.

Animation samplers

Displacement for
"POSITION" from
morph target 1:

 Original mesh
primitive attribute
 "POSITION"

weights=
 [0.5,0.0]

Displacement for
"POSITION" from
morph target 0:

weights=
 [0.0,0.5]

Rendering

Animation channel targets
The interpolated value that is provided by an
animation sampler may be applied to different
animation channel targets.

translation=[2, 0, 0] translation=[3, 2, 0]

Animating the translation of a node:

rotation=
 [0.0, 0.0, 0.0, 1.0]

rotation=
 [0.0, 0.0, 0.38, 0.92]

Animating the rotation of a skeleton node of a skin:

Animating the weights for the morph targets that
are defined for the primitives of a mesh that is
attached to a node:

Page 8 glTF 2.0 Quick Reference Guide

Rev. 0717 www.khronos.org/gltf

chunkLength
uint32

12-byte header

chunkType
uint32

chunkData
uchar[]

length
uint32

version
uint32

magic
uint32

chunkLength
uint32

chunkType
uint32

chunkData
uchar[]

chunk 0 (JSON) chunk 1 (Binary Buffer)

...

The length is the total length of the file, in bytes

The magic entry has the value 0x46546C67,
which is the ASCII string "glTF".This is used
to identify the data as a binary glTF

The version defines the file format version.
The version described here is version 2

The chunkData contains the actual data of the chunk. This may be
the ASCII representation of the JSON data, or binary buffer data.

The chunkType value defines what type of data is contained in the chunkData.
It may be 0x4E4F534A, which is the ASCII string "JSON", for JSON data, or
0x004E4942, which is the ASCII string "BIN", for binary data.

The chunkLength is the length of the chunkData, in bytes

In the standard glTF format, there are two options
for including external binary resources like buffer
data and textures: They may be referenced via
URIs, or embedded in the JSON part of the glTF
using data URIs. When they are referenced via URIs,
then each external resource implies a new
download request. When they are embedded as
data URIs, the base 64 encoding of the binary data
will increase the file size considerably.

To overcome these drawbacks, there is the option
to combine the glTF JSON and the binary data into
a single binary glTF file. This is a little-endian file,
with the extension ".glb". It contains a header,
which gives basic information about the version
and structure of the data, and one or more
chunks that contain the actual data. The first
chunk always contains the JSON data. The
remaining chunks contain the binary data.

Binary glTF files

Extensions

When an extension is used
in a glTF asset, it has to be
listed in the top-level
extensionsUsed property.
The extensionsRequired
property lists the extensions
that are strictly required to
properly load the asset.

"extensionsUsed" : [
 "KHR_lights_common",
 "CUSTOM_EXTENSION"
]

"extensionsRequired" : [
 "KHR_lights_common"
]

"textures" : [
 {
 ...
 "extensions" : {
 "KHR_lights_common" : {
 "lightSource" : true,
 },
 "CUSTOM_EXTENSION" : {
 "customProperty" :
 "customValue"
 }
 }
 }
]

Extensions allow adding
arbitrary objects in the
extensions property of
other objects.
The name of such an
object is the same as the
name of the extension,
and it may contain
further, extension-specific
properties.

The glTF format allows extensions to add new
functionality, or to simplify the definition of
commonly used properties.

Existing extensions

Specular-Glossiness Materials
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_materials_pbrSpecularGlossiness
This extension is an alternative to the default Metallic-Roughness material model: It allows to define
the material properties based on specular and glossiness values.
Common Materials
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_materials_cmnBlinnPhong
This extension allows the easy definition of non-physically based materials. This is based on the
Blinn-Phong model, which is often used in CAD applications. The material can be defined using
a diffuse, specular, and emissive color, and a shininess value.
Common Lights
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_lights
This extension allows adding different types of lights to the scene hierarchy. This refers to point lights,
spot lights and directional lights. The lights can be attached to the nodes of the scene hierarchy.

The following extensions are developed and maintained on the Khronos GitHub repository:

WebGL Rendering Techniques
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_technique_webgl
With this extension, it is possible to define GLSL shaders that should be used for rendering the
glTF asset in OpenGL or WebGL

