Khronos Blog

Announcements, articles, and blurbs from Khronos and Khronos members about Khronos tech, conformant products, and more. If you are a interested in submitting a blog post, please check out our Blog Guidelines.


ASTC (Adaptable Scalable Texture Compression) is an exceptionally efficient compression technology, which allows encoding of a wide variety of texture formats at bit-rates of 8 bits per pixel to below 1 bit per pixel. ASTC was contributed by Arm, developed under the cooperative process at Khronos® and is royalty-free when used with Khronos’ OpenGL® ES and Vulkan® APIs. ASTC enables the size of textures used in 3D games and applications to be significantly reduced while being downloaded and stored – saving memory size, access bandwidth and reducing overall application size while retaining high image quality. These benefits are especially valuable on mobile platforms leading to ASTC becoming the most widely used texture compression format for Vulkan and OpenGL ES applications on Android.

My name is Michael Wong, and in this blog I will talk about SYCL™, the Khronos® Group’s open standard for programming heterogeneous processors in “single-source” standard C++ and the SYCL working group’s activities. I have had the pleasure of chairing SYCL for the last four years, taking over from Codeplay’s Andrew Richards, shepherding a group of insanely talented people from many companies who are driving forward the technology of heterogeneous, modern C++. In this blog, I’ll tell you about my experience at SC19 with SYCL and Intel’s oneAPI that implements the SYCL standard. In future blogs, I would like to tell you more about SYCL features and future directions.

We often hear that developers would like a single location to find all the available resources for learning Vulkan and wanted to create a list of the most up to date and valuable set of resources. We’ve made good progress on new resources, releasing the Vulkan Code Samples and Vulkan Guide both of which we encourage developers of all skill levels to check out. However, there is always more that we can do to improve that state of available

Education has evolved to include 3D content delivered directly to a students mobile devices, allowing them to navigate around the artifact at their own pace. In the last several weeks learning has moved from the classroom into the home, as schools across the world have temporarily closed. The old way of learning involved reading textbooks or consuming content delivered through paper handouts. Sometimes live specimens or scale models could be us

Today the Khronos Vulkan Ray Tracing Task Sub Group (TSG) is announcing the public release of the provisional Vulkan Ray Tracing extensions. The Ray Tracing TSG was formed in early 2018 and tasked to bring a tightly integrated, cross-vendor, ray tracing solution to Vulkan, this release marks the culmination of the first phase of the TSG’s mandate.

The Khronos Group gives out special recognition awards called Khronies. Khronies are handed out at our Face-To-Face meetings for outstanding contributions to Open Standards. At our last face to face in Barcelona, four Khronie Awards were given out.

OLV builds tools and content that help visualize things before they can be touched. Our array of tools help Microsoft Retail to collaborate on the London flagship store from across the globe, a baseball player to customize his own Official Helmet and Glove of Major League Baseball®, and a varsity volleyball team to design their next uniform from Mizuno.

glTF™ is a Khronos royalty-free specification for the efficient transmission and run-time loading of 3D scenes and models by engines, browsers and applications. glTF minimizes both the size of 3D assets and the runtime processing needed to unpack and use them. glTF has become widely adopted throughout the industry, becoming the equivalent of a ‘JPEG for 3D’. glTF is used by hundreds of content tools and services, streamlining 3D authoring w

HLSL support in Vulkan has come a long way since its introduction. Over the past couple of years HLSL in Vulkan has made amazing strides to hit a critical maturation point and earned the coveted label of production ready. HLSL in Vulkan has been achieved through integrating a SPIR-V backend into DXC, Microsoft’s open source HLSL compiler (the encircled section in Figure 1 below), and Khronos’ glslang. It has been no small effort to bring it to the level of quality we enjoy today. Coordinated efforts and contributions of all sizes from IHVs, ISVs, independent developers, and of course Khronos came together to make it all happen.

The original Vulkan synchronization APIs relied on two separate coarse-grained primitives: VkSemaphore and VkFence. Both of these were reusable binary-state objects with slightly different purposes and behavior. VkSemaphore allowed applications to synchronize operations across device queues. VkFence facilitated device to host synchronization. Together, they enabled applications to observe and control the execution of command buffers and other queue commands, but they inherited various limitations of the underlying OS and device mechanisms at the time which made them somewhat difficult to use.

As the “JPEG of 3D,” glTF™ from Khronos® has made a big impact in the world of 3D, enabling the efficient transmission and loading of 3D scenes and models by applications. Cesium, a platform for creating 3D applications that are fast, flexible, and based on real-world geospatial data, has used glTF extensively to further its mission of empowering developers and data providers to build web-based 3D map experiences, and now Cesium has teamed with Uber to continue expanding its 3D Tiles ecosystem, built on glTF.

The Vulkan Working Group has just released the VK_KHR_performance_query extension, which provides a cross-vendor common mechanism to expose performance metrics. These may be used to obtain data from a Vulkan device, typically a graphics card or SoC, to measure the workload demand and assess the impact of application modifications and optimizations.

Last month I wrote about a new book on Data science and visual computing. The book tells us, as we already well know, we are awash in data. It's like the weather, we know it, we can't manage it. We are struggling to get a grip on it, understand it, use it and exploit it, but it is being generated faster than we can harness it. What's more, there are a dozen or more ways to funnel that data to a display with multiple pipelines and APIs. It is a hodgepodge of software that has evolved from the early 1980s (I know because I contributed to the mess we have today). Here comes Khronos to save the day with an exploratory committee to discuss the standardization of an analytic rendering API for data visualization. Khronos is inviting all interested parties to participate. There is no cost or IP obligations to share perspectives, requirements, and use-cases to help determine whether there is an industry need for such an API and to help set the direction for any standardization activities.
devilish