Khronos Updates
GDC 2017

Neil Trevett
Vice President Developer Ecosystem, NVIDIA | President, Khronos
ntrevett@nvidia.com | @neilt3d
Khronos is an International Industry Consortium of over 100 companies creating royalty-free, open standard APIs to enable software to access hardware acceleration for 3D graphics, Virtual and Augmented Reality, Parallel Computing, Neural Networks and Vision Processing.
Khronos Standards Ecosystem

3D for the Web
- Real-time apps and games in-browser
- Efficiently delivering runtime 3D assets

VR, Vision, Neural Networks
- VR/AR system portability
- Tracking and odometry
- Scene analysis/understanding
- Neural Network inferencing

NNEF

Real-time 2D/3D
- Cross-platform gaming and UI
- VR and AR Displays
- CAD and Product Design
- Safety-critical displays

Parallel Computation
- Machine Learning acceleration
- Embedded vision processing
- High Performance Computing (HPC)
Khronos News at GDC 2017

3D Portability

- WebGL 2.0 Shipping
 - ‘WebGL Next’ Design Starting!

- Native VR Apps and Engines
 - Portable, Efficient 3D Assets Everywhere!

- glTF 2.0 with API Independent PBR!

- Native Portable API for Rendering over DX12/Metal/Vulkan!

- Vulkan Adoption Grows VR and Multi-GPU Extensions!

- Cross-Platform Portable Virtual Reality
Khronos News Here at GDC 2017

- Adoption Grows for Vulkan®; New Features Released
 - Details here

- Announcing OpenXR™ for Portable Virtual Reality
 - https://www.khronos.org/blog/the-openxr-working-group-is-here

- WebGL™ 2.0 Specification Finalized and Shipping
 - https://www.khronos.org/blog/webgl-2.0-arrives

- Call for Participation in 3D Portability Exploratory Group
 - A native API for rendering code that can run efficiently over Vulkan, DX12 and Metal khronos.org/3dportability

- Developer preview on glTF™ 2.0
 - https://www.khronos.org/blog/call-for-feedback-on-gltf-2.0
Vulkan and New Generation 3D APIs

Only Windows 10

Only Apple

Cross Platform

SteamOS

Ubuntu

Red Hat

Tizen

Android
Vulkan Games and Game Engines

- Dota 2 on Vulkan port of Source 2
- ‘ProtoStar’ demo on Vulkan port of Unreal Engine 4
- Talos Principle on Vulkan port of Serious Engine
- DOOM on Vulkan port of id Tech 6

Doom's Vulkan patch is a PC performance game-changer.

Vulkan support in V1.8

Vulkan support coming

Developer Preview
Vulkan Momentum Continues to Build

Games Studios publicly confirming that work is ongoing on Vulkan Titles

In first 12 months:
#Vulkan Games on PC = 11
In first 18 months
#DX12 Games on PC = 19

All Major GPU Companies shipping Vulkan Drivers - for Desktop and Mobile Platforms

Mobile, Embedded and Console Platforms Supporting Vulkan

Android 7.0
Nintendo Switch
Android TV
Embedded Linux
New Vulkan Functionality at GDC 2017

- Vulkan 1.0.42 released with new extension sets for VR and multi-GPU
 - https://www.khronos.org/registry/vulkan/#apispecs
- Enables developers with key functionality today
 - AND gathers experience and feedback for future Vulkan core spec releases
- First use of KHX extensions
 - Developed by the working group - and ratified - like traditional KHR extensions
 - But will have TEMPORARY lifetime - should NOT be built into production code
 - Enables developer feedback without polluting long-term extension space
- New LunarG SDK for Vulkan Header 1.0.42.0 released today!
 - Includes support for all newly Released Functionality!
- NVIDIA has published their new Vulkan beta drivers on day of spec release
 - With full support for all the new v1.0.42 extensions
 - Plus building block Vulkan extensions for VRWorks
 on Maxwell and Pascal
Vulkan Multi-GPU Support

- Native multi-GPU support for NVIDIA SLI and AMD Crossfire platforms
 - WDDM must be in “linked display adapter” mode
 - The most common use case – does NOT support dGPU/iGPU

- Explicit control of how GPUs cooperate to enable a variety of operating modes
 - AFR (alternate frame), SFR (Sequential frame) and VR SLI Stereo view rendering

- A “device group” is a set of physical devices that support multi-GPU rendering
 - Acts as single logical device - makes adding device group support as easy as possible
 - Only access each physical GPU in a device group when need explicit control:
 - Memory allocation and binding resources
 - Command Buffer Recording/Submission
 - Synchronization
Vulkan Extension Sets for VR

- The most requested functionality by developers
 - Building Block approach provides explicit level of control to build powerful VR systems

- Multiview extension set
 - Render geometry to multiple surfaces, each with its own viewing parameters
 - Can efficiently render stereo pairs or environment maps

- Sharing extension set
 - Share memory and synchronization primitives across process and instance boundaries
 - Useful for implementing real-time rendering systems such as VR runtimes

- Descriptor Update extension set
 - Alternate ways to update resource references between draw or compute dispatch calls
 - More efficient when a fixed set of resources must be updated repeatedly
 - More convenient for legacy applications
Khronos APIs for VR

Khronos APIs Powering VR Rendering Today
- OpenGL ES and OpenGL on millions of mobile VR devices
- WebVR in browsers powered by WebGL
- SteamVR Beta using Vulkan

3D API features used by VR compositors
- Context priority
- Front buffer rendering
- Tiled rendering (beam racing)
- Multiview

But What About Everything Else for VR...
- Device discovery
- Multiple sensor tracking
- Device Events
- Haptics
- Parameters for optics corrections etc. etc...

OpenXR!
Cross-Platform, Portable, Virtual Reality
Complements Rendering APIs
OpenXR - Solving VR Fragmentation

Before OpenXR
VR Market Fragmentation

After OpenXR
Wide interoperability of VR apps and devices
Design work has started in December 2016
Typically 12-18 months to develop a V1.0 specification
WebGL - 3D for the Web

Content downloaded from the Web

年薪: JavaScript, HTML, CSS, ...

Middleware provides accessibility for non-expert programmers

E.g. three.js library

Content

JavaScript Middleware

Browser provides WebGL 3D engine alongside other HTML5 technologies - no plug-in required

OS Provided Drivers

WebGL uses OpenGL ES 2.0 or Angle for OpenGL ES 2.0 over DX9

Low-level WebGL API provide a powerful foundation for a rich JavaScript middleware ecosystem

Reliable WebGL relies on work by both GPU and Browser Vendors

Khronos has the right membership to enable that cooperation
Pervasive WebGL 1.0

- WebGL on EVERY major desktop and mobile browser

![WebGL - 3D Canvas graphics](http://caniuse.com/#feat=webgl)

Global

- 57.62% + 33.11% = 90.73%

U.S.A.

- 70.95% + 25.07% = 96.02%
WebGL 2.0 Timeline

- **2003:** 1.0
- **2004:** 1.1
- **2007:** 2.0
- **2012:** 3.0
- **2014:** 3.1
- **2015:** 3.2

Fixed function Pipeline

Programmable Vertex and fragment shaders

32-bit integers and floats
NPOT, 3D/depth textures
Texture arrays
Multiple Render Targets

Compute Shaders

WebGL 1.0

Conformance Testing is vital for Cross-Platform Reliability
WebGL 2.0 conformance tests are very thorough
10x more tests than WebGL 1.0 tests

Tessellation and geometry shaders
ASTC Texture Compression
Floating point render targets
Debug and robustness for security

Epic’s Rivalry demo using full Unreal Engine 4 on mobile
https://www.youtube.com/watch?v=jBrG95GdaM

GDC 2017!
WebGL 2.0
WebGL 2.0 - WebGL 2.0 Spec

- Enhanced visual quality, performance, features
 - Instancing, Multiple render targets | Uniform buffers | Transform feedback
 - Multisampled Renderbuffers | 3D textures | NPOT textures
 - More texture formats | Occlusion queries | Vertex array objects
 - Sampler objects | Sync objects | Fragment depth | Primitive restart | ...

- WebGL 2.0 now available in Chrome/Firefox!
 - Chrome: Released to desktop platforms - soon on Android
 - Firefox: Released on all platforms
 - Edge/Safari: plan to ship WebGL 2.0
 - Desktop support at 38% - will continue rising

http://webglstats.com/webgl2

WebVR Running Over WebGL 2.0
WebGL 2.0

PlayCanvas: After the Flood [Video]
The 3D Portability Problem

For developers wishing to use the new generation of explicit 3D APIs there is no single API that runs on all desktop and mobile systems!

Problem for native apps that don’t use game engines AND nexgen WebGL!
“The golden age of application portability through OpenGL and OpenGL ES being available on all desktop and mobile systems is passing.

Developers now want to tap into the enhanced performance of the new generation explicit APIs: Vulkan, DX12 and Metal.

Every cross-platform developer, as well as WebGL, is facing the challenge of rendering portably and efficiently across systems using all three of these APIs.

Khronos has been leading the development of cutting-edge native and Web 3D APIs for many years, and is uniquely qualified to solve this urgent issue confronting the industry.”

Jon Peddie, President of Jon Peddie Research
3D Portability API – Call For Participation

‘WebGL Next’
Design has started inside Khronos
- Could lift ‘Portability API’ to JavaScript and WebAssembly
- Provides nextgen graphics and GPU compute for the Web

A Portability Solution needs to address APIs and shading languages

3D Portability
Portability API Spec
+ Shading Language open source tools

API Overlap Analysis

‘Portability API’ Specification

Open source compilers/ translators for shading and intermediate languages

MIR
MSL
DX IL
GLSL
HLSL

© Copyright Khronos Group 2017 - Page 22
glTF - Runtime 3D Asset Delivery

Audio
- MP3

Video
- H.264

Images
- JPEG

3D
- glTF

New market opportunities for 3D content creation and deployment!

model/gltf+json MIME type Approved by IANA
Compact to Transmit
Fast to Load
Describes Full Scenes
Runtime Neutral
Extensible
Strong glTF Momentum

Oculus Executive Calls For 3D Equivalent Of JPEG To Build The Metaverse

A new standard for 3D scenes is gaining momentum with support from graphics industry leaders, potentially laying the groundwork for science fiction's "metaverse" to be realized.

The GL Transmission Format (glTF) from The Khronos Group, a computer graphics industry standards body, could also put magnitudes more 3D content on the Internet. The Khronos Group is responsible for a variety of technologies critical to 3D and AR/VR, including OpenGL, Vulkan, and glTF.

Publicly Stated Support for glTF
glTF Milestones

- **2012 thru 2014**: Design Iteration and Multiple Implementations
 - Original motivation: standardized way to deliver 3D into WebGL applications

- **Dec 2015**: glTF 1.0 Spec Ratified and Released
 - Significant Industry Adoption

- **Oct 2016**: Validator Project

- **Spring 2017**: We are here! Seeking feedback on developer preview glTF 2.0 before finalization
 - glTF 2.0 Target Spec Finalization
 - glTF 2.0 adds Physically Based Rendering for higher-quality materials and rendering API independence

All glTF spec development on open GitHub:
https://github.com/KhronosGroup/glTF
glTF 2.0 Physically Based Rendering

- In Core: Metallic-Roughness Material model
 - baseColor — base color
 - metallic — metalness
 - roughness — roughness

- Simple to implement with small resources
 - Can be everywhere

- Extension: Specular-Glossiness Material model
 - diffuse — reflected diffuse color
 - specular — specular color
 - glossiness — glossiness

- A little more resource heavy
 - Optional extension (e.g. on low-power devices)

- The two models can be combined
glTF 2.0 PBR materials in various engines

WebGL reference implementation
http://www.seas.upenn.edu/~moneimne/WebGL-PBR/

Laugh Engine running on Vulkan
https://github.com/jian-ru/laugh_engine
What’s new in glTF 2.0

• Physically Based Rendering (PBR) material definitions
 - Material information stored in textures

• Graphics API neutral
 - GLSL materials moved to extension
 - Proven by implementations using WebGL, Vulkan and Direct3D

• Improvements
 - Binary glTF in core
 - Enhanced Performance
glTF 2.0 Scene Description Structure

.glTF (JSON)
- Node hierarchy, PBR material textures, cameras

.bin
- Geometry: vertices and indices
- Animation: key-frames
- Skins: inverse-bind matrices

.png
- Textures

.jpg
- ... Textures

Geometry

Texture based PBR materials
Physically Based Rendering

- Standardize the BRDF inputs for common PBR workflows
 - Metallic-Roughness and Specular-Glossiness
- Incredible industry effort
 - Started by Fraunhofer and supported by Microsoft, Sketchfab, NVIDIA, Autodesk, Marmoset, University of Pennsylvania, and others

Sketchfab User: theblueturtle
https://sketchfab.com/models/b81008d513954189a063ff901f7abfe4
Rapid Transition to glTF 2.0

• There are breaking changes from 1.0 to 2.0 - but processing is streamlined and simplified
 - Overwhelming community feedback to take the pain now - NOT significant work to upgrade

• Industry moving quickly to glTF 2.0 — lots of early adopters
 - BabylonJS, three.js, Cesium, xeogl, instant3Dhub

• gltf-pipeline includes glTF 2.0 updates — including glTF 1.0 to glTF 2.0 translator
 - Open source - use this to support both glTF 1.0 and 2.0 or move your users to 2.0

• Converters/Translators/Validators glTF 2.0 updates nearly ready
 - COLLADA2GLTF and obj2gltf translators
 - Khronos Validator and Gltf-test

• Samples and Tutorials
 - glTF 2.0 sample models with PBR are emerging
 - Extensive glTF tutorial series in draft

Consider moving your pipeline to glTF 2.0 ASAP
Blender glTF 2.0 Exporter RFQ

• Khronos-funded project to bring glTF 2.0 export to Blender
 - Blender, has some early work on glTF export: https://github.com/Kupoman/blendergltf
 - Project is to build out that work to glTF 2.0
 - Resultant code is to be contributed, royalty-free to the Blender open source project

• RFQ Milestones
 - 1. February 27th — Khronos Releases RFQ
 - 2. March 17th — RFQ responses received by Khronos
 - 3. March 24th — Contractor selected and notified
 - 4. March 29th — Contract executed and start of work

Details here: https://www.khronos.org/rfq/
Please Consider Making a Bid!
glTF Roadmap Discussions

- Mesh Compression
 - Google Draco team

- Progressive Geometry Streaming
 - Fraunhofer SRC

- Unified Compressed Texture Format for Transmission
 - Basis format from Binomial
 - Optimized transmission format with efficient local expansion to any GPU format

- Lighting Extension
 - Enhanced lighting control

- Extensions for API and language specifics
 - Optional hooks for enhanced perf/functionality
 - Vulkan, DX12, Metal, GLSL, HLSL, SPIR-V, Metal C++

Share your roadmap priorities with us!
https://github.com/KhronosGroup/gltf