
© The Khronos® Group Inc. 2022 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License

ML Primitives Extension

Jeff Leger, Qualcomm
jleger@qti.qualcomm.com

May 2022

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2022 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Motivation and Goals
• Motivation: Efficient dispatch of ML inference

workloads
• Target Market: Game Engines or Frameworks already

using Vulkan for compute or graphics.
• Goals

- Efficient GPU execution of ML work (optimal
layouts, tuned kernels)

- Fast/easy interop across ML, Graphics, and
Compute (zero copies, no stalls)

- Client-managed cmdBuffers, submits, and
synchronization

- Async dispatch to ML-capable queue family.
Could be a separate IP core

- Alignment to APIs (e.g., DirectML) for portability

Vulkan Driver

ML LibraryApplication

Co
m

pu
te

G
ra

ph
ic

s

M
L

Graphics
Queue

ML
Queue

© The Khronos® Group Inc. 2022 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Principles
• Low-level API for accelerating ML (“metacommands”)

- Backend target for ML Frameworks or Game Engines
- VkPipeline objects represent ML Ops.
- ML workloads recorded into VK cmdBuffer

• Expose a core set of commonly used ML Ops
- 16 Ops exposed via “fixed-function” VkPipelines

- IHVs to provide “hand-tuned” kerels that may
outperform equivalent SPIR-V

- Additional Ops can be added via compute shader
- Rely on external definition of ML Ops and semantics

(NNEF or ONNX).

Convolution
Deconvolutoin
Sigmoid
Relu
Prelu
Tanh

Leaky_relu
Softmax
Maxpool
Avg_pool
Gemm
Fully_connected

Primary

Batch_normalization
Local_response_normalization

Normalization

Concat
Reshape

Copy

© The Khronos® Group Inc. 2022 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

Key Features
• New resource type, the vkTensor

- 4D/5D data storage with flexible layouts
(NCHW, NHCW, NHWC)

- Adds VK_TENSOR_TILING_OPTIMAL for efficient layouts
- Adds vkTensorView for HW tensor descriptors
- Adds Tensor copies and barriers.

• Fit into existing VK API where possible:
- memory allocation, barriers, pipelines,

descriptors, command buffers, and queues.

• Support Fused (primary+activation) ML pipelines
Activation

Primary

Sigmoid
Relu
Tanh
Leaky_relu

Convolution
Deconvolution
Matrix Multiply (GEMM)

Pipeline with Fused Operators

Tensor
Tensor

© The Khronos® Group Inc. 2022 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

Tensor access in Compute Pipelines
• Shader built-ins enable compute pipelines to load/store Tensor resources.

- Related GLSL and SPIR-V extensions add tensorLoad() and tensorStore().
- Tensor type/format is known to compile-time, but tensor

dimensions/strides/layout not known.

#extension GL_EXT_ML_primitives: enable

layout (r32f, set=0, binding=0) readonly uniform tensor4D inTensor;
layout (r32f, set=0, binding=1) writeonly uniform tensor4D outTensor;

void main () {

uvec4 coords = uvec4(0);
float f = tensorLoad(inTensor, coords);
tensorStore(outTensor, coords, f);

return;
}

© The Khronos® Group Inc. 2022 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

Creating Tensor Resouces
• vkCreateTensor, vkDestroyTensor

- Create and Destroy vkTensor resources
- 4D (NCHW) / 5D (NCDHW) tensor types. LINEAR/OPTIMAL tiling.
- Single-component formats, R16_SFLOAT and R32_SFLOAT required

• vkCreateTensorView, vkDestroyTensorView,
- Create/Destroy a views of a Tensor

• vkGetTensorMemoryRequirements
- Implementation-controlled size for backing tensor memory

• vkBindTensorMemory
- binds backing memory for vkTensor

• vkCmdCopyTensor
- Copy data between two tensors

All following existing API patterns for other resource types.

© The Khronos® Group Inc. 2022 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

Creating ML Pipelines
•vkCreateMLPipelines

- Creates one or more ML Pipelines
- Each ML Pipeline implements a single operation

(i.e., conv, reshape, prelu, etc.)
- Each tensor inputs / outputs is fully described

- Tensor size/shape, formats, bindings, etc.

• ML Pipelines can optionally read/write to
VkImages/VkBuffers as if they are VkTensors.
- For use-cases where ML naturally interops with

buffer/image resources from graphics.
- 2D VkImage treated as a 4D Tensor, were

(N=1, C = “VkFormat component count”.

Input
Tensor

Bias
Tensor

Weight
Tensor Output

Tensor

ML Pipeline

conv

© The Khronos® Group Inc. 2022 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

ML Pipeline Interfaces
•ML Ops may define Static Tensor inputs

- Typically, constant across model invocations. Must be
TILING_LINEAR.

- Used for Weight and Bias inputs to Convolution.

•ML Ops may require supplemental storage buffers
- Scratch buffer for Op-private transient data
- Constant buffer for HW-optimized static data
- Same as temporary and persistent resources in

DirectML.

•vkCmdUpdateMLConstantBuffer reads static tensors
and may write to the constant buffer in a HW-optimized
layout.

•vkGetMLPipelineMemoryRequirements gets
required supplemental buffer size(s)

Input
Tensor

Bias
Tensor

Weight
Tensor

Output
Tensor

ML Pipeline

conv

© The Khronos® Group Inc. 2022 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

ML Pipeline Creation Structs (1 of 2)

•VkMLPrimitiveIdEXT enum
identifies the ML operation

• Set/binding for supplemental
resources (scratch+constants)

•pPrimCreateInfo points to an
Op-specific creation structure
(next slide)

typedef struct VkPipelineMLCreateInfoEXT {
VkStructureType sType;
VkPipelineCreateFlags flags;
const void* pPrimCreateInfo;
VkMLPrimitiveIdEXT primitiveID;
int32_t primitiveVersion;
VkMLIntermediatePrecisionEXT precision;
uint32_t constantSet;
uint32_t constantBinding;
uint32_t scratchSet;
uint32_t scratchBinding;
VkPipelineLayout layout;
VkPipeline basePipelineHandle;
int32_t basePipelineIndex;

} VkPipelineMLCreateInfoEXT;

No application shader is provided. The implementation provides a HW-
optimized kernel.

© The Khronos® Group Inc. 2022 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

ML Pipeline Creation Structs (2 of 2)

typedef struct VkMLPipelineLeakyReluCreateInfoEXT {
VkStructureType sType;
const VkMLResourceBindingStateEXT* pX;
const VkMLResourceBindingStateEXT* pY;
float pAlpha; }

VkMLPipelineNnefPreluCreateInfoEXT;

typedef struct VkMLResourceBindingStateEXT {
VkStructureType sType;
VkMLBindingTypeEXT bindingType;
const VkTensorDescriptionEXT* pTensorDesc;
uint32_t set;
uint32_t binding;

} VkMLResourceBindingStateEXT;

typedef struct VkTensorDescriptionEXT {
VkStructureType sType;
VkTensorTypeEXT type;
VkTensorTilingEXT tiling;
VkFormat format;
uint32_t dimensionCount;
const uint32_t* pDimensions;
const uint32_t* pStrides;
VkTensorUsageFlagsEXT usage;

} VkTensorDescriptionEXT;

The create struct fully describes each of the input and output tensor (e.g., format,
dimensions, strides, set/binding, etc), allowing creation of a fully-specialized kernel.

© The Khronos® Group Inc. 2022 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Dispatching ML work
• vkCmdDispatchMLPrimitive(vkCommandBuffer c)

- Records a dispatch of the currently bound ML
Pipeline.

- Iterates over elements in the output Tensor
- reads from input Tensors/buffers/images as

needed.

• vkCmdPipelineBarrier2KHR
- Synchronization of ML workloads is

accomplished via extension structs
- VkDependencyInfoTensorBarriersEXT describes

tensor resource barriers

vkCmdBindPipeline(COMPUTE, ML_PSO1)
vkCmdDispatchMLPrimitive()

vkCmdBindPipeline(COMPUTE, ML_PSO2)
vkCmdDispatchMLPrimitive()

vkCmdBindPipeline(COMPUTE, ML_PSO3)
vkCmdDispatchMLPrimitive()

vkCmdPipelineBarrier2()

VkCommandBuffer

© The Khronos® Group Inc. 2022 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

Status and plans
• “EXT_ML_primitives” proposed extension spec is available

- Currently drafted as a cross-vendor extension
- Internally reviewed by Khronos members. Feedback incorporated.

• QCOM has a beta implementation
- Future exposure in public Adreno drivers will depend on partner feedback /

interest
- QCOM also has similar vendor extension for OpenCL, shipping in Adreno drivers.

• Today’s Call to Action:
- Looking for feedback from ISVs and/or framework owners

© The Khronos® Group Inc. 2022 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

Thank you

	ML Primitives Extension
	Motivation and Goals
	Principles
	Key Features
	Tensor access in Compute Pipelines
	Creating Tensor Resouces
	Creating ML Pipelines
	ML Pipeline Interfaces
	ML Pipeline Creation Structs (1 of 2)
	ML Pipeline Creation Structs (2 of 2)
	Dispatching ML work
	Status and plans
	Thank you

