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Motivation and Goals
• Motivation: Efficient dispatch of ML inference 

workloads 
• Target Market: Game Engines or Frameworks already 

using Vulkan for compute or graphics.
• Goals

- Efficient GPU execution of ML work (optimal 
layouts, tuned kernels)

- Fast/easy interop across ML, Graphics, and 
Compute (zero copies, no stalls)

- Client-managed cmdBuffers, submits, and 
synchronization

- Async dispatch to ML-capable queue family.  
Could be a separate IP core

- Alignment to APIs (e.g., DirectML) for portability
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Principles
• Low-level API for accelerating ML (“metacommands”)

- Backend target for ML Frameworks or Game Engines
- VkPipeline objects represent ML Ops.
- ML workloads recorded into VK cmdBuffer

• Expose a core set of commonly used ML Ops 
- 16 Ops exposed via “fixed-function” VkPipelines

- IHVs to provide “hand-tuned” kerels that may 
outperform equivalent SPIR-V 

- Additional Ops can be added via compute shader
- Rely on external definition of ML Ops and semantics 

(NNEF or ONNX).
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Key Features
• New resource type, the vkTensor

- 4D/5D data storage with flexible layouts 
(NCHW, NHCW, NHWC)

- Adds VK_TENSOR_TILING_OPTIMAL for efficient layouts
- Adds vkTensorView for HW tensor descriptors 
- Adds Tensor copies and barriers.

• Fit into existing VK API where possible: 
- memory allocation, barriers, pipelines, 

descriptors, command buffers, and queues.

• Support Fused (primary+activation) ML pipelines
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Tensor access in Compute Pipelines
• Shader built-ins enable compute pipelines to load/store Tensor resources.

- Related GLSL and SPIR-V extensions add tensorLoad() and tensorStore().
- Tensor type/format is known to compile-time, but tensor 

dimensions/strides/layout not known.  

#extension GL_EXT_ML_primitives: enable

layout (r32f, set=0, binding=0) readonly uniform tensor4D inTensor;
layout (r32f, set=0, binding=1) writeonly uniform tensor4D outTensor;

void main () {

uvec4 coords = uvec4(0);
float f = tensorLoad(inTensor, coords);
tensorStore(outTensor, coords, f);

return;
}
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Creating Tensor Resouces
• vkCreateTensor, vkDestroyTensor

- Create and Destroy vkTensor resources
- 4D (NCHW) / 5D (NCDHW) tensor types.  LINEAR/OPTIMAL tiling.
- Single-component formats, R16_SFLOAT and R32_SFLOAT required

• vkCreateTensorView, vkDestroyTensorView, 
- Create/Destroy a views of a Tensor

• vkGetTensorMemoryRequirements
- Implementation-controlled size for  backing tensor memory

• vkBindTensorMemory
- binds backing memory for vkTensor

• vkCmdCopyTensor
- Copy data between two tensors

All following existing API patterns for other resource types.
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Creating ML Pipelines
•vkCreateMLPipelines

- Creates one or more ML Pipelines 
- Each ML Pipeline implements a single operation 

(i.e., conv, reshape, prelu, etc.)
- Each tensor inputs / outputs is fully described

- Tensor size/shape, formats, bindings, etc. 

• ML Pipelines can optionally read/write to 
VkImages/VkBuffers as if they are VkTensors.
- For use-cases where ML naturally interops with 

buffer/image resources from graphics.
- 2D VkImage treated as a 4D Tensor, were 

(N=1, C = “VkFormat component count”. 
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ML Pipeline Interfaces
•ML Ops may define Static Tensor inputs

- Typically, constant across model invocations.  Must be 
TILING_LINEAR.

- Used for Weight and Bias inputs to Convolution.

•ML Ops may require supplemental storage buffers
- Scratch buffer for Op-private transient data
- Constant buffer for HW-optimized static data
- Same as temporary and persistent resources in 

DirectML.

•vkCmdUpdateMLConstantBuffer reads static tensors 
and may write to the constant buffer in a HW-optimized 
layout.

•vkGetMLPipelineMemoryRequirements gets 
required supplemental buffer size(s)
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ML Pipeline Creation Structs (1 of 2)

•VkMLPrimitiveIdEXT enum
identifies the ML operation

• Set/binding for supplemental 
resources (scratch+constants)

•pPrimCreateInfo points to an 
Op-specific creation structure 
(next slide)

typedef struct VkPipelineMLCreateInfoEXT { 
VkStructureType sType;
VkPipelineCreateFlags flags;
const void*                  pPrimCreateInfo;         
VkMLPrimitiveIdEXT primitiveID;
int32_t                      primitiveVersion;
VkMLIntermediatePrecisionEXT precision;
uint32_t                     constantSet;
uint32_t                     constantBinding;
uint32_t                     scratchSet;
uint32_t                     scratchBinding;
VkPipelineLayout layout;
VkPipeline basePipelineHandle;
int32_t                      basePipelineIndex; 

} VkPipelineMLCreateInfoEXT;

No application shader is provided.  The implementation provides a HW-
optimized kernel.
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ML Pipeline Creation Structs (2 of 2)

typedef struct VkMLPipelineLeakyReluCreateInfoEXT {
VkStructureType sType; 
const VkMLResourceBindingStateEXT* pX;
const VkMLResourceBindingStateEXT* pY;
float                              pAlpha; } 

VkMLPipelineNnefPreluCreateInfoEXT;

typedef struct VkMLResourceBindingStateEXT { 
VkStructureType sType; 
VkMLBindingTypeEXT bindingType; 
const VkTensorDescriptionEXT*  pTensorDesc; 
uint32_t                       set; 
uint32_t                       binding; 

} VkMLResourceBindingStateEXT;

typedef struct VkTensorDescriptionEXT { 
VkStructureType sType; 
VkTensorTypeEXT type;
VkTensorTilingEXT tiling; 
VkFormat format; 
uint32_t              dimensionCount; 
const uint32_t*       pDimensions; 
const uint32_t*       pStrides; 
VkTensorUsageFlagsEXT usage; 

} VkTensorDescriptionEXT;

The create struct fully describes each of the input and output tensor (e.g., format, 
dimensions, strides, set/binding, etc), allowing creation of a fully-specialized kernel.
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Dispatching ML work
• vkCmdDispatchMLPrimitive(vkCommandBuffer c) 

- Records a dispatch of the currently bound ML 
Pipeline.

- Iterates over elements in the output Tensor
- reads from input Tensors/buffers/images as 

needed.

• vkCmdPipelineBarrier2KHR
- Synchronization of ML workloads is 

accomplished via extension structs
- VkDependencyInfoTensorBarriersEXT describes 

tensor resource barriers

vkCmdBindPipeline(COMPUTE, ML_PSO1)
vkCmdDispatchMLPrimitive()

vkCmdBindPipeline(COMPUTE, ML_PSO2)
vkCmdDispatchMLPrimitive()

vkCmdBindPipeline(COMPUTE, ML_PSO3)
vkCmdDispatchMLPrimitive()

vkCmdPipelineBarrier2()

VkCommandBuffer
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Status and plans
• “EXT_ML_primitives” proposed extension spec is available

- Currently drafted as a cross-vendor extension 
- Internally reviewed by Khronos members. Feedback incorporated.

• QCOM has a beta implementation 
- Future exposure in public Adreno drivers will depend on partner feedback / 

interest
- QCOM also has similar vendor extension for OpenCL, shipping in Adreno drivers.

• Today’s Call to Action:
- Looking for feedback from ISVs and/or framework owners
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Thank you
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