Implementing WebGPU For Unity

Brendan Duncan
Senior Graphics Engineer
Unity Technologies
Unity web player

→ WebAssembly
 — C++ and C# compiled via Emscripten
 — Javascript bindings integrate into browser

→ Graphics Device
 — Graphics API abstraction layer in Unity
 — WebGL implemented with GLES device

→ Shader Compilation
 — HLSL translated to target shading language
 — WebGL compiles HLSL to GLSL
Unity WebGPU

→ **WebAssembly**
 - Custom WebGPU Emscripten binding
 - https://github.com/jui/wasm_webgpu

→ **Graphics Device**
 - Integrates WebGPU into Unity
 - Pipeline and BindGroup caching
 - Resource management

→ **Shader Compilation**
 - HLSL compiles to WGSL
 - $\text{HLSL} \rightarrow \text{HLSLcc} \rightarrow \text{GLSL} \rightarrow \text{GLSlang} \rightarrow \text{SPIR-V} \rightarrow \text{Tint} \rightarrow \text{WGSL}$

→ **Unity 2023.3+**
 - Enabled via project settings
 - Can fall back to WebGL if WebGPU is not available
WebGPU enabled features

Compute Shaders
- GPU Skinning
- VFX Graph
- General purpose compute

Forward+ Rendering
- No per-object limit for lights.

Pipeline Caching
- Pipeline creation and shader compilation is cached to improve performance.
Challenges

→ WebGPU Limits / Missing Features
 - WebGPU limits more restrictive than other APIs.
 - No synchronous gpu readback.
 - Strict validation errors.
 - Texture format limitations.
 - Missing features such as texel buffers.

→ Shader Issues
 - Uniformity Analysis produces false negatives.
San Francisco ➔ March 18-22

Debugging: WebGPU Inspector

→ No existing tools for debugging WebGPU
→ Dawn for native builds, debug with VS, RenderDoc
→ Developed **WebGPU Inspector**
 - Chrome extension graphics debugger
 - Frame captures
 - Live GPU object inspection: textures, buffers, shaders, etc.
 - Recording playback
 - Bug repo generation
→ Developed Outside of Unity, open source

https://github.com/brendan-duncan/webgpu_inspector
More information at