Geometry, Textures, and Workflow – Optimizing glTF

glTF Meetup
October 3, 2023
Today's Presenters

Pawel Nikiel (DGG)
Max Limper (DGG)
Andreas Vasilakis (Phasmatic)
Adam Morris (Cesium)
How to Participate

- **Speaker Questions**
 - During the presentations, please submit your questions to the speakers by using the Zoom Q&A feature, not the chat button. At the end of the talk, our moderator will put as many questions as possible to the speaker.

- **Recording**
 - We are recording this webinar and will be sharing it via the event page on the Khronos website. A direct link will be posted in chat.

- **Survey**
 - To help us design future glTF events, we would appreciate it if you could complete the short survey form that will pop up at the end of the webinar. The survey link will also be sent out in our follow up email.
Geometry, Textures, and Workflow - Optimizing glTF

Tuesday, October 3, 2023 | Khronos glTF Virtual Meetup

Max Limper (DGG) | Adam Morris (Cesium)
Pawel Nikiel (DGG) | Andreas Vasilakis (Phasmatic)
Paweł Nikiel

- CTO @ DGG, Creators of RapidCompact
- Contributor to 3D Commerce & 3D Formats WGs
- Over 10 years of experience in 3D art, VR & AR development
- Focused on pipelines, automation & scale
- Everything interactive
Many Publishing Targets

Cp. Khronos 3D Commerce Asset Creation Guidelines v1.0 (section: Publishing Targets)
Hardware & Bandwidth Constraints

<table>
<thead>
<tr>
<th>Publishing Target</th>
<th>Max. Target File Size</th>
<th>Max. Target Triangle Count</th>
<th>Target (Max) Number of Draw Calls</th>
<th>Max. Target Bitmap resolution, to meet bandwidth requirements (JPG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Item Mobile AR or 3D Web Catalogue View</td>
<td>3MB</td>
<td>150,000</td>
<td><20 (500)</td>
<td>2K</td>
</tr>
<tr>
<td>Banner Ad View</td>
<td>500KB</td>
<td>30,000</td>
<td><5 (100)</td>
<td>512</td>
</tr>
<tr>
<td>Web-based Planning Tool</td>
<td>1MB</td>
<td>40,000</td>
<td><5 (50)</td>
<td>1K</td>
</tr>
<tr>
<td>(recommendations for one out of multiple items)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Item Desktop 3D Web View</td>
<td>3MB</td>
<td>250,000</td>
<td><100 (800)</td>
<td>2K</td>
</tr>
<tr>
<td>Offline Rendering</td>
<td>No Limit</td>
<td>No Limit</td>
<td>No Limit</td>
<td>No Limit</td>
</tr>
</tbody>
</table>

Cp. Khronos [3D Commerce Asset Creation Guidelines v1.0](#) (section: [Publishing Targets](#))
3D Asset Optimization Workflow
Clustering

What?
- Basic optimization technique originating in the 80's
- Fast performance
- Can be parallelized

When?
- Huge datasets, dense meshes
- Real-time computation
- Need to save memory

How?
- Divide space into fixed-size grid
- Find representative position based on all vertices in each cell
- Merge all vertices to the position
Clustering
Decimation

What?
- Well established technique
- Sequential, difficult to parallelize
- Possible to balance performance vs accuracy depending on needs

When?
- Good input topology or 3D scans
- Specific number of tris expected
- Preservation of data needed (e.g. UVs)
- Not suited for high genus or noisy mesh
- Doesn’t work well with overlaid layers

How?
- Calculate quadric error (or edge length)
- Find new positions with smallest offset from original curvature
- Easy to stack levels of simplification
- New method -> probabilistic quadrics
Decimation

Optimized with RapidCompact
Remeshing

What?
- Can mean two things
- Still being perfected
- Can be quite slow due to shrink wrapping process, accuracy needed

When?
- Bad input
- High genus, complex assets
- Stacked layers
- Invisible geometry to remove
- Difficult to preserve data (e.g. UVs)

How?
- Create voxel grid
- Refine
- Shrink wrap
- Finding closest points is risky
- Decimate at the end of process
Remeshing

Optimized with RapidCompact
Animation optimization

Animation curves
- Possible to simplify
- For interchange it’s common to convert to high density linear curve due to different implementations of splines and others
- Usually very compressible data (10:1 ratio possible)
- Compression currently missing in glTF:(

Additionally:
- Rigid animations -> possible to simplify meshes
- Skinned animations -> additional steps needed, need to rebind new mesh to existing skeleton
- Skeleton simplification -> need to redirect weights to remaining bones
- Shape keys (morph targets) -> after simplification need to figure out which vertex is affected by which target

IronMan CC-BY courtesy of 9A Films / Nihar Arora
Animation optimization

#Polygons: 640K / 20K / 5K IronMan CC-BY courtesy of 9A Films / Nihar Arora
Max Limper

- Co-Founder and CEO @ DGG,
 Creators of RapidCompact
- Background in CS & 3D Graphics
- glTF Enthusiast & Contributor
Optimizing Textures: Downscaling & Atlasing

Input (10.90MB):
- 5 materials (leather, mask, glasses, stand, misc)
- 15 different maps (5 x base color / ORM / normals)

Output (2.59MB):
- 2 materials (opaque, transparent)
- 6 different maps (2 x base color / ORM / normals)
- 2K/1K resolution for opaque 256/128 for transparent
- Adaptive to 3D size, ORM also has smaller resolution

- Faster transmission & less GPU memory
- Faster rendering: less draws & texture switches
- Compressing individual texture maps -> Later (Andreas)
Defining Realistic Materials: glTF Extensions

Extensions used:
- KHR_materials_transmission
- KHR_materials_ior
- KHR_materials_volume (glass)
- KHR_materials_iridescence (iridescence effect)
Optimizing Materials with KHR_materials_variants

- Enables a single self-contained GLB file for all colorways of a product
- Enables sharing of geometry across variants in one file
- We can share textures (e.g., normals) across variants, too
Most “Aggressive” Optimization: Drop Textures

- Use representative untextured materials instead of textures
- For ultra-compact, fast-loading previews
- **Aim:** super-fast loading to show something to users of 3D Web / AR
 (while high-resolution content is loading in the background)

Textured, 6.50MB

Untextured (“DropTextures”), 28KB
Andreas Vasilakis
andreas@phasmatic.com

- Co-Founder and CEO @ Phasmatic
 - Photorealistic 3D eCommerce
 - WebGL/glTF Ray Tracing
- PhD in CS & 3D Graphics
- Postdoc Researcher & Adj. Professor
Creating, Optimizing & Validating 3D Content
Creating, Optimizing & Validating 3D Content

- Creation
- Compression
- Quality Assurance
- Delivery

GlTF

This work is licensed under a Creative Commons Attribution 4.0 International License
Creating, Optimizing & Validating 3D Content

- Creation
- Compression
- Quality Assurance
- Delivery

Gltf
Creating, Optimizing & Validating 3D Content

- Command Line Interfaces for Compression
 - Not direct visual comparison
 - Non-intuitive & user-friendly for artists
 - Is compliant with use case specifications?
Creating, Optimizing & Validating 3D Content

- Command Line Interfaces for Compression
 - Not direct visual comparison
 - Non-intuitive & user-friendly for artists
 - Is compliant with use case specifications?

- Can we do better?
 - Interactive online tools to help artists!
 - glTF-Compressor
 - glTF Asset Auditor
Enabling Efficient Geometry Size Reduction

- DRACO provides advanced compression for mesh geometry

![Original vs DRACO](example.png)

Horse Metatarsal CC-BY courtesy of ASCSA
Enabling Efficient Geometry Size Reduction

- **DRACO** provides advanced compression for mesh geometry

![Original vs DRACO images]

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d_model.bin</td>
<td>1,400 KB</td>
</tr>
<tr>
<td>3d_model.gltf</td>
<td>5 KB</td>
</tr>
<tr>
<td>3d_model_DRACO.bin</td>
<td>220 KB</td>
</tr>
<tr>
<td>3d_model_DRACO.gltf</td>
<td>5 KB</td>
</tr>
</tbody>
</table>

* Horse Metatarsal CC-BY courtesy of ASCSA

- **MESHOPT** provides compression and fast decoding for geometry, targets, and animations

Example generated using www.phasmatic.com
Enabling Compact and Efficient glTF Textures

Khronos' KTX Artist Guide
Khronos glTF-Compressor is here!

- Interactive tune texture compression size and quality
 - Intuitive Texture Selection
 - Complete image information display
 - Default selections based on image use
 - Flexible Texture Compression
 - JPG, PNG, WebP as well as KTX
 - Advanced KTX compression options
 - 2D and 3D Side-by-Side Live Texture Comparison
 - Optimized Assets Export

- Extends the capabilities of the Khronos open-source glTF Sample Viewer
- Future release will include Geometry Compression capabilities

Live Tool: [glTF-Compressor-Release](https://github.com/glTF-Compressor) - Github: [glTF-Compressor](https://github.com/glTF-Compressor)
Khronos glTF-Compressor: Live Demo

Live Tool: glTF-Compressor-Release - Github: glTF-Compressor
Khronos glTF Asset Auditor

- Quickly check glTF asset for a specific use case, defined by an audit profile

Web Browser

Command Line Interface

Adam Morris
- Staff Software Engineer @ Cesium
- M.S. in Human Computer Interaction from Iowa State University
- glTF enthusiast and Khronos 3D Formats Working Group member.
- Comprehensive XR background and experience.
Intelligent Organization

How do we get from a single model, to handling highly detailed scenes?
as a case study for glTF Optimization.
Primer

- Open standard for streaming massive heterogeneous 3D geospatial data
 - Terrain & imagery, 3D buildings, photogrammetry, point clouds, BIM models, interiors, etc.
 - Multiple source data types, one runtime format
- Visualization + analysis
- Combine:
 - Flexible spatial data structure in JSON
 - “Runtime ready” binary tile formats
 - glTF for 3D model formats
 - Vertex/polygon-level metadata
 - Declarative styling
- Started by Cesium in 2015
- OGC Community Standard since 2019
3D Tiles can be used for...

- point clouds...
- geospatial...
- CAD/BIM...
- highly detailed models.
3D Tiles Primer

- Open standard for streaming massive heterogeneous 3D geospatial data
 - Terrain & imagery, 3D buildings, photogrammetry, point clouds, BIM models, interiors, etc.
 - Multiple source data types, one runtime format
- Visualization + analysis
- Combine:
 - Flexible spatial data structure in JSON
 - “Runtime ready” binary tile formats
 - glTF for 3D model formats
 - Vertex/polygon-level metadata
 - Declarative styling
- Started by Cesium in 2015
- OGC Community Standard since 2019
Octrees

- Traditional method for subdivision in 3D graphics.
- Partitions space by recursive subdivision.
- Properties
 - Three-dimensional
 - Extends a quadtree by using three orthogonal planes to subdivide a space into 8 children.
- Supports (where needed!)
 - Non-uniform subdivision
 - Tight bounding volumes
 - Overlapping children
Quadtrees

- Partitions space by recursive subdivision.
- Properties
 - Two-dimensional
 - Each node has exactly 4 children.
 - Regions may be square, rectangular, or even arbitrary shapes.
- Further optimizations
 - Bounding volumes around each child.
 - Efficient for sparse data sets.
 - "Loose" quadtrees
 - Children overlap, but coherence is preserved.
 - Useful to prevent specific 3D models from being split across partitions.
Quadtrees

Quadtree with tight bounding volumes

Quadtree with overlapping partitions

k-d trees

- Useful for subdividing sparse and non-uniform data sets.

Properties
- Binary tree where every node is a k-dimensional point in space.
- Every node implicitly generates a hyperplane that divides space into two partitions called "half-spaces".
- Has non-uniform subdivision, allowing a more balanced tree for sparse and non-uniform data sets.

"The Curse of Dimensionality"
- Largely irrelevant, since k is generally 2 or 3 in graphics.

Further optimizations
- Multi-way k-d trees

http://www.cr4.it/vic/cgi-bin/bib-page.cgi?id=%27Goswami:2013:EMF%27
You can use a combination of methods!
Combining methods

Bounding Volume Subdivision
Combining methods

Choose the right subdivision

- Octree in local coordinates
 - 3D Tiles from terrestrial Lidar scan

- Quadtree in global coordinates
 - NYC buildings

Data source: Trimble

Figure 13: Bounding boxes for New York using Uniform Grid Tiling. Top Left: Uniform Level 4, Top Right: Uniform Level 5, Bottom Left: Uniform Level 6, Bottom Right: Composited view of Uniform Levels 4, 5, 6 for comparison.
Combining methods

Choose the right subdivision
Combining methods

Handling coordinates: Box Bounding Volumes
Combining methods

Handling coordinates: Region Bounding Volumes

![Diagram of combining methods with coordinates and bounding volumes]

- tile
 - boundingVolume
 - box
 - region
 - sphere
 - geometricError
 - refine
 - content
 - boundingVolume (box, region, or sphere)
 - uri: Separate file with tile contents, streamed on demand
 - children[]
Combining methods

Geometric Error

The geometric error is measured in meters, comparing the simplified geometry to the real geometry:

The screen space error (SSE) is measured in pixels:

SSE: about 4 pixels
SSE: about 2 pixels
SSE: about 1 pixel
Combining methods

Mixing Levels of Detail
Putting it all together

<table>
<thead>
<tr>
<th>Format Description</th>
<th>Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liverpool Source</td>
<td>1.6GB</td>
</tr>
<tr>
<td>Uncompressed 3D Tileset</td>
<td>1.2GB</td>
</tr>
<tr>
<td>With KTX2 Compression only</td>
<td>1.0GB</td>
</tr>
<tr>
<td>With Draco compression only</td>
<td>729MB</td>
</tr>
<tr>
<td>With KTX2 and Draco compression</td>
<td>482MB</td>
</tr>
</tbody>
</table>
Notable glTF Extensions

- **Useful for glTF optimization**
 - KHR_draco_mesh_compression
 - KHR_mesh_quantization
 - EXT_mesh_gpu_instancing
 - EXT_meshopt_compression

- **Notable mentions**
 - MSFT_lod
 - Alternative method for adding Level of Detail to glTF files.
 - Lacks widespread support.
Where to learn more?

- glTF
 - https://github.com/KhronosGroup/glTF

- 3D Tiles
 - You can use this for more than geospatial!
 - https://github.com/CesiumGS/3d-tiles
 - Community Projects
 - Vulkan Scene Graph loader for 3D Tiles
 - https://github.com/timoore/vsgCs
 - NASA-AMMOS 3D Tiles loader for three.js
 - https://github.com/NASA-AMMOS/3DTilesRendererJS
 - Reference Cards

- Cesium
 - https://cesium.com/learn/

- CesiumJS, Cesium for Unreal, Cesium for Unity, and Cesium for Omniverse are all open-source!
 - CesiumJS: https://github.com/CesiumGS/cesium
 - Cesium for Unreal: https://github.com/CesiumGS/cesium-unreal
 - Cesium for Unity: https://github.com/CesiumGS/cesium-unity
 - Cesium for Omniverse: https://github.com/CesiumGS/cesium-omniverse
Ask the Experts

Pawel Nikiel (DGG)
Max Limper (DGG)
Andreas Vasilakis (Phasmatic)
Adam Morris (Cesium)

Use the Zoom Q&A feature to ask your questions
Upcoming Khronos Group Events

- Oct 17: glTF Complex Scenes & Interactivity
- Oct 31: Let’s Get Moving- Adding Physics to glTF
- Nov 14: Standardizing Body Attachment Points for 3D Commerce Virtual Try On
- Recently Recorded: Exploring the Artistic Frontier: Unleashing Creativity in 3D Models with glTF and PBR

Join our next glTF Meetup! If you are interested in presenting at an upcoming glTF meetup, please contact events@khronosgroup.org
A recording of this presentation and the slides will be available on the Khronos Group website.

www.khronos.org/events

For more information on glTF and links to online resources, please visit

www.khronos.org/gltf