
© Copyright Khronos® Group 2019 - Page 1

Neural Network Exchange Format
Deploying Trained Networks to Inference Engines

Gergely Debreczeni, Chief Scientist



© Copyright Khronos® Group 2019 - Page 2

Outlook

• The NN deployment problem and its resolution
• About the NNEF working group, AIMOTIVE
• NNEF design philosophy
• NNEF components and usage
• Future directions and contribution



© Copyright Khronos® Group 2019 - Page 3

NNEF In a Nutshell -
The problem
• There is a wide range of open-source deep learning frameworks available

- Caffe, Torch, Theano, TensorFlow, Chainer, CNTK, MXNet, Caffe2, PyTorch
- Each framework has its own model format to store trained networks

• Various chip vendors have released or are planning to release deep 
learning inference kits / engines
- Nvidia, Intel, AMD, ARM, Apple, Qualcomm, …

• Inference engines need to 
be compatible with many 
deep learning frameworks

• Network descriptions have no
clear semantics (ambiguities)

Caffe

Torch

TensorFlow

Vendor A

Vendor B

Vendor C



© Copyright Khronos® Group 2019 - Page 4

NNEF In a Nutshell –
The solution
• Create a unified network description format to facilitate deployment of 

networks from frameworks to inference engines
- Describe network structure and data with clear semantics

• Provide tools to convert from frameworks to the exchange format
• Provide tools for inference engines to import the exchange format

- No need to worry about where the network was trained

• Focus on Edge devices in 
production environments
- Low power, low cost
- Safety critical

Caffe

PyTorch

TensorFlow

Vendor A

Vendor B

Vendor C

NNEF



© Copyright Khronos® Group 2019 - Page 5

About the NNEF group

• Neural Network Exchange Format Working Group was founded in 
September 2016
- Initiated by AImotive
- After an exploratory phase earlier to investigate industry requirements
- The standardization idea was also circulated among framework developers

• NNEF group is in collaboration with the OpenVX Working Group
- OpenVX provides an execution model for running computational graphs on 

embedded HW for vision
- Has a neural network extension, incorporates NNEF import

• Provisional specification was released in December 2017
• Version 1.0 was released in November 2018, revision 1.0.1 in April 2019
• Open for new companies to join!!



© Copyright Khronos® Group 2019 - Page 6

About AImotive

• AImotive is a software company delivering artificial intelligence based 
software stack for self-driving cars
- Software components for recognition, localization, control

- Relying primarily on camera inputs
- Hardware IP for custom chip to accelerate neural networks in a low power 

budget with high efficiency

• Solutions heavily build on neural networks
- We use various deep learning frameworks to train networks
- We use GPUs and FPGAs for prototyping, custom chips for production
- We experience the NN exchange problem in-house and in relation with 

partners



© Copyright Khronos® Group 2019 - Page 7

Deep Learning Frameworks -
Similarities and Differences
• We work with and examined various frameworks

- Torch, Caffe, TensorFlow, PyTorch (examined Theano, Chainer, Caffe2)

• They vary in the way they build networks, but the underlying operations 
are very similar
- Most of the core ops are powered by the same implementation (cuDNN)
- They build a computational graph that is similar on the lower level

- The high level interface is different

• However, there are critical differences in the operations
- Differences in parameterizations of computations (mathematical formulas)
- Differences in output shape computations (asymmetric padding)
- Differences in output value computations (border handling, image resizing)



© Copyright Khronos® Group 2019 - Page 8

NNEF Design Philosophy

• Convey all relevant information from DL frameworks to inference engines
• Platform independence

- No hardware specification, no hardware specific data formats, etc.

• Flexible, extensible description (rapidly changing field)
- By vendor specific operations
- By future use cases and operations

• Easy to consume by compiler/optimization tools
• Implementable and optimizable on various hardware platforms

- Hierarchical description, multiple levels of granularity

• Support for quantization techniques



© Copyright Khronos® Group 2019 - Page 9

NNEF Design Philosophy –
Supported Network Architectures
• Support the following learning tasks

- Image classification
- Semantic segmentation
- Object detection, instance segmentation
- Video processing (action classification)

• Support at least the following network architectures
- Fully connected networks (MLPs, auto-encoders)
- Convolutional networks (feedforward, encoder-decoder)
- Recurrent networks (LSTMs, GRUs)

• Support inference mainly, but training graphs are also possible
- Needs extra operations for gradients/optimizer



© Copyright Khronos® Group 2019 - Page 10

NNEF Design Philosophy –
Validation of Network Description
• Ensure that a network description can be easily validated

- Syntactic/semantic validity of a document
- Validity of the resulting graph

- Implementation independent aspects
- Graph connectivity, declaration of used identifiers

- For example well defined tensor shapes and proper initialization

• Possibility to check that an inference engine can execute a network
- Without loading the whole network

- Structure is separated out from the data
- Whether all operations/parameterizations are supported



© Copyright Khronos® Group 2019 - Page 11

What is included in the standard

• NNEF aims to abstract out the network description from frameworks
- Only the network structure and data (no data feeding or training logic)

• A distilled set of frequently used operations
- Well defined input-output mapping (output shape and value)
- Well defined parameterization (math formulas)

• A simple syntax for describing networks on a medium level
- Functional description, functional language-like

• Data format (binary) for storing network parameters (weights)
• Support for describing quantization info



© Copyright Khronos® Group 2019 - Page 12

NNEF Components –
Structure description
• Devised a simple language to describe network structure

- Describe a computational graph on tensor objects
- Simple syntax, limited set of features
- Strictly typed, single-static assignment, easier to analyze/validate

• Supports the hierarchical description of graph fragments
- Similar to functions in scripting languages for graph building
- Define larger fragments (compound ops) from smaller ones (primitives)

- Instantly extensible with new compounds that can be built from primitives
- Vendors don’t need to implement all primitives, can optimize compounds

• A predefined set of primitive and compound operations for building 
networks
- Element-wise, activation, linear, pooling, normalization



© Copyright Khronos® Group 2019 - Page 13

NNEF Components –
Data storage
• The structure description has data parameters (network weights)
• Parameter tensors are stored in a separate format

- Simple data-format to store tensor data in floating point or quantized 
representation

• All the data and structure description is wrapped around with a container
- Optionally compressed/encrypted tar file
- Results in a single data-stream



© Copyright Khronos® Group 2019 - Page 14

NNEF Components –
Quantization info
• Quantization is a crucial element of executing networks efficiently on 

embedded hardware
• Quantization information needs to be stored in the network description

- In a platform independent manner
- No reference to underlying data representations, like bit widths, arithmetic 

precision, etc.
- Approach: ‘pseudo’ quantization, conceptually on real-valued data

• Quantization algorithms are various
- Describe them as compounds built from primitives 

- Rounding and clamping operations

• Quantization algorithm for activations and for stored parameters
- The data itself may be stored in the quantized format
- Along with quantization algorithm



© Copyright Khronos® Group 2019 - Page 15

NNEF Generation and Consumption

• It is possible to write third party converters for DL frameworks
- We have done that for Caffe, TensorFlow, PyTorch
- Starting from proprietary formats of frameworks
- Map operations to NNEF operations
- Reverse conversion is also possible
- Only for operations supported by both the framework and NNEF

• NNEF can be consumed by compiler stacks / proprietary inference engines
- APIs may implement a subset of NNEF operations
- NNEF operations may be lowered before consumption

- The recipe for lowering can be defined in NNEF syntax
- Compilation may happen online of offline



© Copyright Khronos® Group 2019 - Page 16

NNEF Tools

• Continuously developing a library of tools to support the usage of NNEF
- github.com/KhronosGroup/NNEF-Tools

• File format parser (C++ and Python)
- Easy to use, load/validate model in one line, return simple model structure

• Converter tools (Python)
- Simple library to support writing of converters with a common logic
- Available for TensorFlow, Caffe, ONNX, bidirectional conversion

• Model zoo: collection of models converted to NNEF for reference
• Future possibilities (contributions are welcome)

- Quantization helpers
- Graph optimization/visualization
- Front ends for compiler stacks



© Copyright Khronos® Group 2019 - Page 17

Future Directions –
Conformance
• NNEF is a file format which may be input to a compilation process

- Compiler verification is well developed in practice
- The file itself describes an executable graph

• Define NNEF conformance tests like compiler verification tests
- Test cases separated by domain (image processing) and task (classification)
- Test cases described by source files and input data

- Source files are NNEF models
- Input/expected output data represented as tensor binaries

- Test cases cover a subset of operations
- Subset of possible parameter combinations

- Test cases for complete networks
- Define task dependent metrics for evaluation, leave room for approximations



© Copyright Khronos® Group 2019 - Page 18

NNEF vs ONNX

• In our view, there are no clear conceptual advantages/disadvantages of 
one or the other

• Technical differences
- ONNX uses binary format (protobuf)
- NNEF uses text format for describing network structure for transparency

• Difference in development
- ONNX is more rapidly changing, good for R&D

- Developed by open source community
- NNEF is a slower changing, more stable standard, better for industry

- Developed by a consortium of industry players with a well established 
governance model

- Member companies can have a vote on development decisions



© Copyright Khronos® Group 2019 - Page 19

NNEF Advisory Panel

• Anyone who wishes to review the NNEF specification draft can join an 
Advisory Panel
- After signing and NDA with Khronos Group

• Provides early access to specification drafts
• Share feedback on mailing list



© Copyright Khronos® Group 2019 - Page 20

Thank you!

Contact Info

Gergely Debreczeni
Chief Scientist

AIMOTIVE
Budapest, Hungary / Mountain View, CA

gergely.debreczeni@aimotive.com
www.aimotive.com

Khronos Group
www.khronos.org

mailto:gergely.debreczeni@aimotive.com
http://www.aimotive.com/
http://www.khronos.org/


© Copyright Khronos® Group 2019 - Page 21

Hands-on Demo

• Clone NNEF-Tools repository from GitHub
- Install nnef python module
- Few words about the organization of the repo (parser, io, converters)

• Show validator.py and sample.py
- Turn on shape inference, compression
- Change something in the examples to make it fail

• Show the model zoo
- Download some ONNX or TF models and convert them to NNEF
- Convert back to NNEF

• Show conversion from TF python code
- Show the mapping of ops from TF to NNEF


