Vulkan 1.1
March 2018

EMBARGOED UNTIL
Wednesday 7th March, 6AM PT
Vulkan 1.1 Launch and Ongoing Momentum

Strengthening the Ecosystem
Improved developer tools (SDK, validation/debug layers)
 More rigorous conformance testing
Shader toolchain improvements (size, speed, robustness)
Shading language flexibility - HLSL and OpenCL C support
Vulkan Public Ecosystem Forum

Vulkan 1.0 Extensions
Maintenance updates plus additional functionality
 Explicit Building Blocks for VR
 Explicit Building Blocks for Homogeneous Multi-GPU
 Enhanced Windows System Integration
 Increased Shader Language Flexibility
 Enhanced Cross-Process and Cross-API Sharing

Widening Platform Support
Pervasive GPU vendor driver availability
Port Vulkan apps to macOS/iOS and DX12
Open source drivers

Building Vulkan’s Future
Deliver complete ecosystem - not just specs
Listen and prioritize developer needs
Drive GPU technology

Vulkan 1.1 specification launching
March 7th with open source conformance tests and tools, and multiple vendor implementations!
New Generation GPU APIs

Non-proprietary, royalty-free open standard ‘By the industry for the industry’
Portable across multiple platforms - desktop and mobile
Modern architecture | Low overhead | Multi-thread friendly
EXPLICIT GPU access for EFFICIENT, LOW-LATENCY, PREDICTABLE performance

Vulkan is the primary platform 3D API on Android 7.0+
Explicit GPU Access

- Application tells the driver what it is going to do
 - In enough detail that driver doesn’t have to guess
 - When the driver needs to know it
- In return, driver promises to do
 - What the application asks for
 - When it asks for it
 - Very quickly
- Predictable performance costs
 - Creating pipelines, allocating memory, ...
- No driver magic - no surprises - simpler drivers
 - Remove guesswork and late decision-making
- Putting control in the hands of developers
 - Flexible scheduling of CPU and GPU workloads
 - Management of memory and synchronization
Pervasive Vulkan 1.0

Major GPU Companies supporting Vulkan for Desktop and Mobile Platforms

Platforms

- Desktop
- Mobile (Android 7.0+)
- Media Players
- Cloud Services
- Consoles
- Embedded
- Virtual Reality

Game Engines

- Valve
- id
- CRYENGINE
- Unity
- Epic Games
- Croteam
- Xenko

http://vulkan.gpuinfo.org/
Vulkan is Powering Mobile Gaming...

And more....
Lineage 2 Revolution
Heroes of Incredible Tales
Dream League Soccer...
... and Enabling Cross-Platform AAA Titles

Vulkan-only AAA Titles on PC

Publicly announced games as of March 2018
#Vulkan = 34
#DX12 = 27

Dota 2 on PC and macOS

AAA on Linux
Vulkan Ecosystem Momentum

Windows Downloads

Linux Downloads

LunarG Vulkan SDK
Download rate increases every year since launch
http://vulkan.lunarg.com

Vulkan GitHub Open Source Projects end of 2016

Today

We’ve found 431 repository results

1,798 repository results
Vulkan Layer Architecture

- Layered design for cross-vendor tools innovation and flexibility
 - IHVs plug into a common, extensible layer architecture for code validation, debugging and profiling during development without impacting production performance
- LunarG open-source Vulkan SDK ships on Windows, Linux and Mac
 - Validation, debug, and device simulation layers

Production Path (Performance)

Vulkan-based Title

Vulkan’s Common Loader

IHV’s Installable Client Driver

Validation Layers

Debug Layers

Debug Layers can be installed during Development

Debug information via standardized API calls

RenderDoc
Frame capture and introspection
https://renderdoc.org/
New Vulkan Developer Tools

- **Vulkan Layer Factory (VLF)**
 - Rapid layer development through hiding implementation details

- **Device Simulation Layer**
 - Simulate target device capabilities, without requiring actual physical hardware

- **Assistant Layer**
 - Best practices layer that highlights potential performance issues, questionable usage patterns, common mistakes, and items not specifically prohibited by the Vulkan specification but that may lead to application problems

Delivered with the LunarG Vulkan SDK
https://vulkan.lunarg.com/

Source available in the LunarG Vulkan Tools repository
https://github.com/LunarG/VulkanTools
Public Vulkan Ecosystem Forum

A new public forum to share ecosystem issues and opportunities - and coordinate solutions!

Go to https://github.com/KhronosGroup/Vulkan-Ecosystem to join the conversation!
Bringing Vulkan 1.0 Apps to Apple Platforms

VALVE

Dota 2 running on Mac up to 50% faster than native OpenGL

Vulkan Applications

Open source SDK to build, run, and debug applications on macOS including validation layer support

Vulkan macOS SDK

SPIRV-Cross

Convert SPIR-V shaders to platform source formats

macOS / iOS Run-time

Maps Vulkan to Metal

MoltenVK for macOS and iOS
For macOS 10.11, iOS 9.0 and up

Previously a paid product
Now released into OPEN SOURCE
Completely free to use - no fees or royalties - including for commercial applications
SPR-V Ecosystem

Open source tools and translators
https://github.com/KhronosGroup/SPIRV-Tools

Third party kernel and shader languages

SPIR-V
- Khronos defined cross-API IR
- Native graphics and parallel compute
- Easily parsed/extended 32-bit stream
- Data object/control flow retained for effective code generation/translation

OpenCL C Front-end
OpenCL C++ Front-end
SYCL Front-end

SPIR-V (Dis)Assembler

SPIR-V Validator

SPIRV-opt | SPIRV-remap

SPIR-V 1.3 released with Vulkan 1.1

IHV Driver Runtimes

GLSL
HLSL

MSL

GLSL
HLSL

SPIRV-Cross

SPIR-V Optimizations
- Inlining (exhaustive)
- Store/Load Elimination
- Dead Code Elimination
- Dead Branch Elimination
- Common Uniform Elimination
- Loop Unrolling and Constant Folding
- Common Subexpression Elimination

Additional Intermediate Forms

LLVM

Khronos liaising with Clang/LLVM Community
E.g. discussing SPIR-V as supported Clang target

LLVM to SPIR-V Bi-directional Translator

SYCL Front-end

DXC

OpenCL C++ Front-end

GLSL
HLSL

SVIR

SPIR-V 1.3 released

https://github.com/KhronosGroup/SPIRV-Tools

GLSL
HLSL

SPIRV-Cross

SPIR-V (Dis)Assembler

SPIR-V Validator

SPIRV-opt | SPIRV-remap

SPIR-V Optimizations
- Inlining (exhaustive)
- Store/Load Elimination
- Dead Code Elimination
- Dead Branch Elimination
- Common Uniform Elimination
- Loop Unrolling and Constant Folding
- Common Subexpression Elimination

Additional Intermediate Forms

IHV Driver Runtimes

OpenCL

Vulkan

© Copyright Khronos™ Group 2018 - Page 13
Clspv OpenCL C to Vulkan Compiler

- Experimental collaboration between Google, Codeplay, and Adobe
 - Successfully tested on over 200K lines of Adobe OpenCL C production code
 - Released in open source https://github.com/google/clspv
 - Tracks top-of-tree LLVM and clang, not a fork

- Compiles OpenCL C’s programming model to Vulkan’s SPIR-V execution environment
 - Proof-of-concept that OpenCL compute can be brought seamlessly to Vulkan

![Diagram of Clspv OpenCL C to Vulkan Compiler process]

- OpenCL C Source
- OpenCL Host Code
- Clspv Compiler
- Run-time API Translator
- Runtime
- Possible future open source project
- Existing open source project https://github.com/google/clspv
New Functionality in Vulkan 1.1

- **Protected Content**
 - Restrict access or copying from resources used for rendering and display
 - Secure playback and display of protected multimedia content

- **Subgroup Operations**
 - Efficient mechanisms that enable parallel shader invocations to communicate
 - Wide variety of parallel computation models supported

Example Subgroup Operations

A subgroup is a set of invocations (tasks) running on a GPU Compute Unit
(Note many GPUs typically support subgroup sizes of 32/64 invocations)
Proven Extensions Now in Vulkan 1.1 Core

- **Multiview**
 - A single render pass can render to multiple image views simultaneously
 - Use cases include rendering left and right eye views to a stereo VR headset, or six face views of a cube map, with a single draw call

- **Device Groups**
 - Enables homogeneous multi-GPU systems such as AMD CrossFireX and NVIDIA SLI for high-performance gaming and VR
 - Device groups make the number of GPUs in the system relatively transparent to the application
 - Applications can be written to use one or many GPUs with a minimum of changes

- **Cross-process and Cross-API sharing**
 - Share memory and sync primitives (semaphores and fences) between APIs in a single application, or between multiple applications
 - Many applications, e.g. allowing a compositor to present images from Vulkan and OpenGL ES applications to the same display device
 - This feature is used in the Valve Steam VR SDK and other advanced mobile platforms

- **Advanced Compute Functionality**
 - Read and write 16-bit quantities stored in GPU memory, and to refer to data structures using a restricted form of pointers
 - Greatly expands Vulkan’s ability to support GPU compute kernels

- **HLSL support**
 - Relaxed block layout enables support for the same memory data layout constraints as Microsoft’s HLSL
 - Enables identical HLSL shaders in both Vulkan and DX applications
 - Easier translation of HLSL into SPIR-V, the portable compiled shader format accepted by Vulkan

- **YCbCr support**
 - Sample the YCbCr color formatted textures produced by many video codecs
 - Useful for compositing video streams and mixing them with other graphical content
Vulkan 1.1 Shipping Today

- **Specification**: in open source for community use and feedback
- **Conformance Tests**: in open source for responsive bug fixing and enhancements
- **Tools**: LunarG SDK and validation/debug/simulation/assistant layers - all in open source

GPU Vendors with conformant Vulkan 1.1 drivers

Khronos' Ongoing Vulkan Mission
Continue to build the complete Vulkan Ecosystem
Specifications, tests, tools and community
Listen and prioritize developer needs
Drive GPU technology in the industry