Lightweight Web3D Key Technologies for 3D Commerce Application

Prof. Jinyuan Jia

SmartWeb3D Media Lab
Tongji University
Shanghai, China

smart3d.tongji.edu.cn/en
Why WebVR?

- Internet+ made great successes before 2015
 - Especially in China (BAT)
- VR+ suddenly popped up in 2016
 - But its industrialization has not been successful
 - VR+ became fading and AI+ prosperous gradually
- How to make VR industrialization successful
- VR+ should be combined with Internet+
 - Internet+ has good business model
 - (Mobile) Internet based VR
 - Web Browser Based VR

Internet+ + VR+ = WebVR++
Challenges of WebVR

1. **Data Bottleneck**: 3D data are too heavy

2. **Transmission Bottleneck**: too slow to wait

3. **Rendering Bottleneck**: too slow and too bad

4. **Lightweighting**: too expensive and complicated

5. **Few Research**: no overall or systematic solution
Outline

1. Introduction to WebVR
2. Challenges of WebVR
3. Key Technologies of WebVR
4. Lightweight WebVR Engine
5. Demonstrative Application
1. **Lightweight Web3D Modeling**
 Efficient, Low-cost, Lightweight

2. **Progressive Web3D P2P Transmission**
 Loading the interested scenes instantly

3. **Lightweight Web3D Rendering**
 Lightweight, Fast, Realistic, Beautiful

4. **Lightweight Web3D Engine or Platform**
 Big Data, Online, No Plugins, Convenient
Repetition Based Lightweight Web3D Modeling

- Voxelization feature extraction of entities for similarity retrieval to remove those repetitive entities
- Only transmit those repetitive entities once from server, but instance rendering them many times at Web Browsers
Lightweight SceneGraph

- For Easy Internet Transmission and Web Rendering

Combine lightweighting and PM streaming together
Fine-Grained Preprocessing of Big BIM Data

Lightweighting + Streaming + Segmenting

Efficient Low-cost accurate

Fine-grained Scenegraph
This demo can be shown by accessing the following Web Link

http://youku3d.com/smart3d/ceilinglight/

or by scanning the QSR code with your mobile phone
Data Size: 100M (accurately for Designing)

http://www.shxt3d.com:5378/
Progressive Transmission

Minimizing the data size to download at each step

Overlapping Voxels
Translating Decrement
Translating Increment

Incremental FOI
Lightweight Online Visualization of Web3D Big Data

Fine-grained Preprocessing

- Semantic Lightweighting
- Geometric Lightweighting
- Triangular Mesh Strip Buffer
- Converting glTF
- Lossless Draco Compression
- Binary Conversion

Progressive Peer to Peer Transmission

- Incremental Frustum of Interest
 - Fill Degree
 - Attention Degree
 - Repetition Degree
- User Behavior Analysis
- Interest Based Physical Peer Networking
- WebRTC Based Web3D P2P Transmission

Multi-threaded Online Loading/ Parsing/ Rendering

- Decompressor/ Parser using Web Assembly
- Instance Rendering
- Adaptive Web3D Caching
Lightweight Mobile WebBIM Demo (2)

- SmartCity with 4 buildings and 3 underground spaces,
- 279,019 entities and 39,260,000 triangles,
- 10 minutes to open 2GB using Revit

http://106.15.190.126/web_bim/sg.html
Introduction to WebVR++

Challenges of WebVR

Key Technologies of WebVR

Lightweight WebVR Engine

Demonstrative Application
Cloud Baking Based Lightweight Web3D GI Renderer

Web front-end

1. **Lightweighted 3D scenes** → **Load and manage scene**
2. Make GI request based on user operation
3. Update render queue
4. Deferred rendering based direct lighting
5. Blend web direct lighting and cloud indirect lighting

Web socket

Cloud server back-end

1. **Original 3D scenes** → **Load and manage scene**
2. Is web request GI?
3. Receive camera and lighting information
4. Update camera and lighting
5. Multiple GI algorithms based indirect lighting
6. Create GI map
7. Encode GI map frame

Lightweighted scene loading and management

Make GI request based on user operation

Update and transmit scene information

Direct lighting calculation

Blending
Cornell Box

(1) without Could Baking GI

(2) With Could Baking GI
Demo (2)

- **Sponza**

 a. Without Cloud Baking
 b. With Cloud Baking
Framework of Lightweight WebVR Engine

Lightweight modeling

- Rule-based lightweight modeling
- Sketch based lightweight modeling
- Image or vision based lightweight modeling
- Search based lightweight modeling

Web3D Assets Library
- Lightweight 3D Models
- Texture
- Lightmap
- Materials
- Scripts
- Animation
- Shader
- ……….

P2P WebVR Assets Management System

P2P progressive downloading protocol

Web Visualization Services Platform

WebVR Projects

Lightweight WebVR engine
Outline

1. Introduction to WebVR++
2. Challenges of WebVR
3. Key Technologies of WebVR
4. Lightweight WebVR Engine
5. Demonstrative Application
Lightweight Web3D Furniture Commerce

http://www.shxt3d.com/housecolider/

Collision Detection Methods:
1. Sparse Octree
2. Norton Coding
3. Binary Computing

Lightweight Online Collision Detection

Advantages:
1. Lightweight
2. Efficient
3. Low Cost
4. Accurate
Lightweight Web3D Furniture Commerce

Distance Field and Case Reasoning

Layout Energy of Furniture Distribution

http://106.15.190.126:5555/
Thanks!

Prof. Jinyuan Jia
Tongji University
jyjia@tongji.edu.cn
+86-15900454788
smart3d.tongji.edu.cn/en