OpenGL / OpenGL ES Update

Piers Daniell
July 2019
OpenGL ES Update

- Updated OpenGL ES 3.2 API and shader language specs
- OpenGL ES 3.2 adoption expands
 - 20+ new conformance submissions
 - Android OpenGL ES 3.2 adoption increases

<table>
<thead>
<tr>
<th>OpenGL ES version</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>23.8%</td>
</tr>
<tr>
<td>3.0</td>
<td>31.7%</td>
</tr>
<tr>
<td>3.1</td>
<td>13.9%</td>
</tr>
<tr>
<td>3.2</td>
<td>30.6%</td>
</tr>
</tbody>
</table>

Data collected during a 7-day period ending on July 23, 2018.

<table>
<thead>
<tr>
<th>OpenGL ES Version</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL 2.0</td>
<td>21.1%</td>
</tr>
<tr>
<td>GL 3.0</td>
<td>29.8%</td>
</tr>
<tr>
<td>GL 3.1</td>
<td>13.6%</td>
</tr>
<tr>
<td>GL 3.2</td>
<td>35.5%</td>
</tr>
</tbody>
</table>

Data collected during a 7-day period ending on May 7, 2019.
OpenGL ES Extensions

- Newly ratified extensions
 - GL_KHR_shader_subgroup
- New multi-vendor extensions
 - GL_EXT_depth_clamp
 - GL_EXT_texture_query_lod
 - GL_EXT_texture_shadow_lod
 - GL_EXT_multiview_timer_query
 - GL_EXT_multiview_texture_multisample
 - GL_EXT_multiview_tessellation_geometry_shader
New Vendor OpenGL ES Extensions

- **NVIDIA**
 - GL_NV_memory_attachment
 - GL_NV_compute_shader_derivatives
 - GL_NV_scissor_exclusive
 - GL_NV_mesh_shader
 - GL_NV_shader_texture_footprint
 - GL_NV_representative_fragment_test
 - GL_NV_shading_rate_image
 - GL_NV_fragment_shader_barycentric
 - GL_NV_shader_subgroup_partitioned

- **Qualcomm**
 - GL_QCOM_shader_framebuffer_fetch_rate
 - GL_QCOM_texture_foveated_subsampled_layout
 - GL_QCOM_YUV_texture_gather
OpenGL Update

- Updates to OpenGL 4.6 API and shader language specs
 - Bug fixes and clarifications
 - Many of which were contributed through GitHub
- New OpenGL 4.6 conformant product submissions from:
 - AMD
 - Intel
 - NVIDIA

- Conformance test coverage improvements and fixes
- Development of new multi-vendor extensions
OpenGL Extensions

- Newly ratified extensions
 - GL_KHR_shader_subgroup
- New multi-vendor extensions
 - GL_EXT_texture_sRGB_R8
 - GLX_EXT_context_priority
 - GL_EXT_texture_shadow_lod
 - GL_EXT_multiview_timer_query
 - GL_EXT_multiview_texture_multisample
 - GL_EXT_multiview_tessellation_geometry_shader
New Vendor Extensions

- NVIDIA:
 - GL_NV_memory_attachment
 - GL_NV_compute_shader_derivatives
 - GL_NV_fragment_shader_barycentric
 - GL_NV_mesh_shader
 - GL_NV_representative_fragment_test
 - GL_NV_scissor_exclusive
 - GL_NV_shader_texture_footprint
 - GL_NV_shading_rate_image
 - GL_NV_vdpau_interop2
 - GL_NV_shader_subgroup_partitioned
GL_KHR_shader_subgroups

- Brings Vulkan 1.1 subgroup functionality to OpenGL/ES
- Synchronized cross-thread operations without shared memory
 - Reducing latency and increasing bandwidth
 - Accelerates parallelizable algorithms like reduction and sorting
- Available with GLSL and SPIR-V (OpenGL 4.6)
- Vote, arithmetic, ballot, shuffle, clustered and quad operations

- Beta driver available: https://developer.nvidia.com/opengl-driver
OpenGL’s Missing Vulkan Features

- Like ray tracing, for example
- Can use interop extensions
 - GL_EXT_memory_object{,_win32,_fd}
 - GL_EXT_semaphore{,_win32,_fd}
 - GL_EXT_win32_keyed_mutex
- Enables OpenGL applications to incrementally leverage Vulkan functionality
 - Shared explicit memory objects
3DEXPERIENCE CATIA

- Dassault Systèmes is using Vulkan/OpenGL interop to achieve interactive object space AO in CATIA, an OpenGL application
 - See the demo at the NVIDIA booth
Vulkan’s Missing OpenGL Features

- Fixing functionality gaps between Vulkan and OpenGL
 - VK_KHR_draw_indirect_count
 - VK_KHR_shader_draw_parameters
 - VK_EXT_buffer_device_address / VK_EXT_descriptor_indexing
 - VK_EXT_conditional_rendering
 - VK_EXT_depth_range_unrestricted
 - VK_EXT_fragment_shader_interlock
 - VK_EXT_index_type_uint8
 - VK_EXT_line_rasterization
 - VK_EXT_transform_feedback
 - VK_EXT_vertex_attribute_divisor

- Remaining functionality gaps
 - Quad primitives
 - GL_NV_command_list
OpenGL Line Quality on Vulkan

- **VK_EXT_line_rasterization**
 - Initiated by leading CAD software vendor
- **Bresenham-style line rasterization**
- **Smooth rectangular lines (coverage to alpha)**
- **Line stipple for all line rasterization modes**

Beta driver available: https://developer.nvidia.com/vulkan-driver
GL command list → VK device generated cmds

- OpenGL extension allows recording commands on the device
 - vbo, ibo, ubo bindings and drawcalls
 - Useful for in-frame occlusion culling, or other specialized work creation
- Vulkan extension is work in progress
 - NVX_device_generated_commands design was significantly overhauled
 - Now NV_dgc uses real addresses like GL, and shader groups like ray tracing
 - Exposed in NDA driver - looking for feedback to refine design before public EXT

- RTX 6000 preliminary results:
 - Recording 1M drawcalls
 - With 131k shader group changes
 - Commands per draw:
 - shader group, vbo, ibo, 2x push
 - 6 threads on i7-6850K: ~8.7ms
 - GPU-generated: ~0.36ms
OpenGL/ES and DX on Vulkan

• Improved Vulkan functionality makes emulation easier
 - Zink - OpenGL on Vulkan
 - ANGLE - OpenGL ES on Vulkan
 - dxvk - DirectX 10/11 on Vulkan
 - vkd3d - DirectX 12 on Vulkan
Thanks!

- Questions? Come see me after at the Khronos Networking Reception