Neural Network Exchange Format
Deploying Trained Networks to Inference Engines

Gergely Debreczeni, Chief Scientist
Outlook

• The NN deployment problem and its resolution
• About the NNEF working group, AIMOTIVE
• NNEF design philosophy
• NNEF components and usage
• Future directions and contribution
NNEF In a Nutshell - The problem

- There is a wide range of open-source deep learning frameworks available
 - Caffe, Torch, Theano, TensorFlow, Chainer, CNTK, MXNet, Caffe2, PyTorch
 - Each framework has its own model format to store trained networks

- Various chip vendors have released or are planning to release deep learning inference kits / engines
 - Nvidia, Intel, AMD, ARM, Apple, Qualcomm, ...

- Inference engines need to be compatible with many deep learning frameworks

- Network descriptions have no clear semantics (ambiguities)
NNEF In a Nutshell - The solution

- Create a unified network description format to facilitate deployment of networks from frameworks to inference engines
 - Describe network structure and data with clear semantics
- Provide tools to convert from frameworks to the exchange format
- Provide tools for inference engines to import the exchange format
 - No need to worry about where the network was trained
- Focus on Edge devices in production environments
 - Low power, low cost
 - Safety critical

Caffe
PyTorch
TensorFlow

NNEF

Vendor A
Vendor B
Vendor C
About the NNEF group

- Neural Network Exchange Format Working Group was founded in September 2016
 - Initiated by Almotive
 - After an exploratory phase earlier to investigate industry requirements
 - The standardization idea was also circulated among framework developers

- NNEF group is in collaboration with the OpenVX Working Group
 - OpenVX provides an execution model for running computational graphs on embedded HW for vision
 - Has a neural network extension, incorporates NNEF import

- Provisional specification was released in December 2017
- Version 1.0 was released in November 2018, revision 1.0.1 in April 2019
- Open for new companies to join!!
About Almotive

- Almotive is a software company delivering artificial intelligence based software stack for self-driving cars
 - Software components for recognition, localization, control
 - Relying primarily on camera inputs
 - Hardware IP for custom chip to accelerate neural networks in a low power budget with high efficiency

- Solutions heavily build on neural networks
 - We use various deep learning frameworks to train networks
 - We use GPUs and FPGAs for prototyping, custom chips for production
 - We experience the NN exchange problem in-house and in relation with partners
Deep Learning Frameworks - Similarities and Differences

• We work with and examined various frameworks
 - Torch, Caffe, TensorFlow, PyTorch (examined Theano, Chainer, Caffe2)

• They vary in the way they build networks, but the underlying operations are very similar
 - Most of the core ops are powered by the same implementation (cuDNN)
 - They build a computational graph that is similar on the lower level
 - The high level interface is different

• However, there are critical differences in the operations
 - Differences in parameterizations of computations (mathematical formulas)
 - Differences in output shape computations (asymmetric padding)
 - Differences in output value computations (border handling, image resizing)
NNEF Design Philosophy

- Convey all relevant information from DL frameworks to inference engines
- Platform independence
 - No hardware specification, no hardware specific data formats, etc.
- Flexible, extensible description (rapidly changing field)
 - By vendor specific operations
 - By future use cases and operations
- Easy to consume by compiler/optimization tools
- Implementable and optimizable on various hardware platforms
 - Hierarchical description, multiple levels of granularity
- Support for quantization techniques
NNEF Design Philosophy - Supported Network Architectures

• Support the following learning tasks
 - Image classification
 - Semantic segmentation
 - Object detection, instance segmentation
 - Video processing (action classification)

• Support at least the following network architectures
 - Fully connected networks (MLPs, auto-encoders)
 - Convolutional networks (feedforward, encoder-decoder)
 - Recurrent networks (LSTMs, GRUs)

• Support inference mainly, but training graphs are also possible
 - Needs extra operations for gradients/optimizer
NNEF Design Philosophy - Validation of Network Description

• Ensure that a network description can be easily validated
 - Syntactic/semantic validity of a document
 - Validity of the resulting graph
 - Implementation independent aspects
 - Graph connectivity, declaration of used identifiers
 - For example well defined tensor shapes and proper initialization

• Possibility to check that an inference engine can execute a network
 - Without loading the whole network
 - Structure is separated out from the data
 - Whether all operations/parameterizations are supported
What is included in the standard

- NNEF aims to abstract out the network description from frameworks
 - Only the network structure and data (no data feeding or training logic)
- A distilled set of frequently used operations
 - Well defined input-output mapping (output shape and value)
 - Well defined parameterization (math formulas)
- A simple syntax for describing networks on a medium level
 - Functional description, functional language-like
- Data format (binary) for storing network parameters (weights)
- Support for describing quantization info
NNEF Components - Structure description

• Devised a simple language to describe network structure
 - Describe a computational graph on tensor objects
 - Simple syntax, limited set of features
 - Strictly typed, single-static assignment, easier to analyze/validate

• Supports the hierarchical description of graph fragments
 - Similar to functions in scripting languages for graph building
 - Define larger fragments (compound ops) from smaller ones (primitives)
 - Instantly extensible with new compounds that can be built from primitives
 - Vendors don’t need to implement all primitives, can optimize compounds

• A predefined set of primitive and compound operations for building networks
 - Element-wise, activation, linear, pooling, normalization
NNEF Components - Data storage

• The structure description has data parameters (network weights)
• Parameter tensors are stored in a separate format
 - Simple data-format to store tensor data in floating point or quantized representation
• All the data and structure description is wrapped around with a container
 - Optionally compressed/encrypted tar file
 - Results in a single data-stream
NNEF Components - Quantization info

• Quantization is a crucial element of executing networks efficiently on embedded hardware

• Quantization information needs to be stored in the network description
 - In a platform independent manner
 - No reference to underlying data representations, like bit widths, arithmetic precision, etc.
 - Approach: ‘pseudo’ quantization, conceptually on real-valued data

• Quantization algorithms are various
 - Describe them as compounds built from primitives
 - Rounding and clamping operations

• Quantization algorithm for activations and for stored parameters
 - The data itself may be stored in the quantized format
 - Along with quantization algorithm
NNEF Generation and Consumption

- It is possible to write third party converters for DL frameworks
 - We have done that for Caffe, TensorFlow, PyTorch
 - Starting from proprietary formats of frameworks
 - Map operations to NNEF operations
 - Reverse conversion is also possible
 - Only for operations supported by both the framework and NNEF

- NNEF can be consumed by compiler stacks / proprietary inference engines
 - APIs may implement a subset of NNEF operations
 - NNEF operations may be lowered before consumption
 - The recipe for lowering can be defined in NNEF syntax
 - Compilation may happen online or offline
NNEF Tools

• Continuously developing a library of tools to support the usage of NNEF
 - github.com/KhronosGroup/NNEF-Tools

• File format parser (C++ and Python)
 - Easy to use, load/validate model in one line, return simple model structure

• Converter tools (Python)
 - Simple library to support writing of converters with a common logic
 - Available for TensorFlow, Caffe, ONNX, bidirectional conversion

• Model zoo: collection of models converted to NNEF for reference

• Future possibilities (contributions are welcome)
 - Quantization helpers
 - Graph optimization/visualization
 - Front ends for compiler stacks
Future Directions - Conformance

• NNEF is a file format which may be input to a compilation process
 - Compiler verification is well developed in practice
 - The file itself describes an executable graph

• Define NNEF conformance tests like compiler verification tests
 - Test cases separated by domain (image processing) and task (classification)
 - Test cases described by source files and input data
 - Source files are NNEF models
 - Input/expected output data represented as tensor binaries
 - Test cases cover a subset of operations
 - Subset of possible parameter combinations
 - Test cases for complete networks
 - Define task dependent metrics for evaluation, leave room for approximations
NNEF vs ONNX

• In our view, there are no clear conceptual advantages/disadvantages of one or the other

• Technical differences
 - ONNX uses binary format (protobuf)
 - NNEF uses text format for describing network structure for transparency

• Difference in development
 - ONNX is more rapidly changing, good for R&D
 - Developed by open source community
 - NNEF is a slower changing, more stable standard, better for industry
 - Developed by a consortium of industry players with a well established governance model
 - Member companies can have a vote on development decisions
NNEF Advisory Panel

- Anyone who wishes to review the NNEF specification draft can join an Advisory Panel
 - After signing and NDA with Khronos Group
- Provides early access to specification drafts
- Share feedback on mailing list
Thank you!

Contact Info

Gergely Debreczeni
Chief Scientist
AIMOTIVE
Budapest, Hungary / Mountain View, CA
gergely.debreczeni@aimotive.com
www.aimotive.com

Khronos Group
www.khronos.org
Hands-on Demo

- Clone NNEF-Tools repository from GitHub
 - Install nnef python module
 - Few words about the organization of the repo (parser, io, converters)
- Show validator.py and sample.py
 - Turn on shape inference, compression
 - Change something in the examples to make it fail
- Show the model zoo
 - Download some ONNX or TF models and convert them to NNEF
 - Convert back to NNEF
- Show conversion from TF python code
 - Show the mapping of ops from TF to NNEF