WebGL and Why You Should Target It

Khronos Developer Day, GDC 2018
THREE.js Demos

● The most commonly used WebGL library
● http://demos.littleworkshop.fr/infinitown
● http://www.hellorun.helloenjoy.com/
● http://www.playmapscube.com/
● https://stinkmoji.cool/
● http://devx.ddd.it/en/experiments/
WebGL Fundamentals

- Built-in 3D graphics API in browsers
- Based on industry-standard OpenGL ES APIs
- Implement on one device, runs everywhere
- No installation step – completely frictionless
 - Get lots of eyeballs on your games
- Many options for deployment
 - Web pages
 - PWAs
 - Electron/Cordova
 - Native apps using WebView
WebGL Fundamentals (continued)

- **High API quality**
 - Conformance suite: 2.0.0 contains 340,000 test cases
 - Workarounds for numerous driver bugs

- **WebGL 1.0 implements OpenGL ES 2.0 APIs**
 - Supported on Firefox, Chrome, Edge, Safari
 - Support rate: 98% [*]

- **WebGL 2.0 implements OpenGL ES 3.0 APIs**
 - Currently supported on Firefox, Chrome
 - Edge and Safari intend to implement it
 - Support rate: 41% [*] and increasing

[*] Data from https://webglstats.com/
WebGL 2.0 Features

3D textures Compressed textures Texture storage Seamless cubemaps
NPOT textures Float textures Integer textures sRGB textures
Instanced rendering Transform feedback Multiple render targets
Query objects Sync objects Sampler objects
Uniform blocks Vertex array objects Integer vertex attributes
GLSL ES 3.0 shaders
WebGL + glTF

- glTF: a royalty-free specification for the efficient transmission and loading of 3D scenes and models by applications
 - https://www.khronos.org/gltf/
- WebGL + glTF: streamlines authoring workflows and enables interoperable use of content across the industry
- Two of the major WebGL libs, Three.js and Babylon.js (among others) support glTF 2.0
WebGL + WebAssembly + Emscripten

1. WebAssembly (wasm): a new portable, size- and load-time-efficient format suitable for compilation to the web
 ○ http://webassembly.org/
 ○ [Now shipping in all major browsers](http://webassembly.org/)

2. WebGL + WebAssembly: almost native graphics apps on the web

3. Emscripten: source-to-source compiler that produces a subset of JavaScript (asm.js) or WebAssembly
 ○ Easily brings existing (C++) code bases to the web
A Small Engine That Can Be Compiled with WASM

- https://github.com/floooh/oryol
- Demos
Unity and Unreal Engine Support WASM Export

● Unity WASM demos
 ○ http://webassembly.org/demo/
 ○ https://files.unity3d.com/christopheri/webgl_linear/index.html

● Unreal Engine WASM demo
PlayCanvas: Another Game Engine for the Web

- Pure JavaScript game engine with full functionality and small download size
- https://robostorm.io/
- After the Flood: https://playcanv.as/b/SFlt5Ode/
- Editor: https://playcanvas.com/features
Transform Feedback / Particle System Demos

- Babylon.js particle systems
 - Documentation: https://doc.babylonjs.com/babylon101/particles
 - Demo: https://www.babylonjs-playground.com/?12

- More from the web
 - https://gpfault.net/assets/jsdemos/webgl2-particles/03/index.html
 - http://webglsamples.org/WebGL2Samples/#transform_feedback_instanced
 - http://uber.github.io/deck.gl/examples/wind/
Visualization and Authoring

● Uber visualization toolkits
 ○ https://uber.github.io/luma.gl/#/
 ○ https://uber.github.io/react-map-ql/#/
 ○ https://uber.github.io/react-vis/

● Autodesk Forge
 ○ https://viewer-rocks.autodesk.io/

● SketchFab 3D models
 ○ https://sketchfab.com/

● Figma: Interactive collaborative design tools
 ○ https://www.figma.com/
Advanced Rendering

- Subsurface scattering and translucency
 - https://blog.sketchfab.com/sketchfab-now-supports-subsurface-scattering-translucency/

- Path Tracing
 - https://wwwtyro.github.io/caffeine/

- Physically Based Rendering
 - Casino: http://playcanv.as/p/LpmXGUe6/?overlay=false&scrolling=true

- Water Simulation
 - http://madebyevan.com/webgl-water/

- Lighting

- Animation
 - Sketchfab: Lily & Snout
Useful Links

- WebGL specs: https://www.khronos.org/registry/webgl/specs/latest/
- Chrome experiments: https://experiments.withgoogle.com/chrome?tag=WebGL
- WebGL 2.0 samples: http://webglsamples.org/WebGL2Samples/
- ShaderToy: https://www.shadertoy.com/
- WebGL stats: https://webglstats.com/
- WebGL dev list: https://groups.google.com/forum/#!forum/webgl-dev-list
- WebGL spec discussion list: https://www.khronos.org/webgl/public-mailing-list/