TensorFlow

- Library for dataflow programming
- Symbolic math library with multidimensional data arrays (tensors)
- Used for machine learning applications
- Developed by Google for research & production
- Open-source software since 2015
- Only supported CUDA at that time… 😞

https://www.tensorflow.org/
Zynq UltraScale+ MPSoC overview: All Programmable...
Vivado
- Hardware basic block integration
- RTL (Verilog & VHDL) programming

Vivado HLS
- C & C++ high-level synthesis
- Down to LUT, DSP & BRAM...

SDAccel
- Khronos Group OpenCL

SDSoC
- C & C++ with #pragma

SDNet
- Generate routers from network protocol description

Various libraries
- OpenCV, DNN...

Linux
- Usual CPU multicore programming

OpenAMP
- Real-time ARM R5
Over 100 members worldwide
Any company is welcome to join

© Copyright 2017 Xilinx
Khronos standards for heterogeneous systems

Connecting Software to Silicon

3D for the Web
- Real-time apps and games in-browser
- Efficiently delivering runtime 3D assets

Vision and Neural Networks
- Tracking and odometry
- Scene analysis/understanding
- Neural Network inferencing

Parallel Computation
- Machine Learning acceleration
- Embedded vision processing
- High Performance Computing (HPC)

Real-time 2D/3D
- Virtual and Augmented Reality
- Cross-platform gaming and UI
 - CG Visual Effects
 - CAD and Product Design
 - Safety-critical displays
Remember C++?

2-line description by Bjarne Stroustrup

» Direct mapping to hardware
» Zero-overhead abstraction

⇒ Unique existing position in embedded system to control the full stack!!!

» C++ rebooted in 2011
 – 1 new version every 3 years
 – Shipping what is implemented

» Easier
 – Simpler to do simple things

» More powerful
 – Possible to do more complex things
Even better with modern C++ (C++14, C++17, C++2a)

➤ Huge library improvements, parallelism...
➤ Simpler syntax, type inference in constructors...

```cpp
std::vector my_vector { 1, 2, 3, 4, 5 };  
// Display each element
for (auto e : my_vector)
    std::cout << e;

// Increment each element
for (auto &e : my_vector)
    e += 1;
```

Even better with modern C++ (C++14, C++17, C++2a)
Modern C++ : like Python but with speed and type safety

▷ Python 3.x (interpreted):

```python
def add(x, y):
    return x + y

print(add(2, 3))    # Output: 5
print(add("2", "3"))    # Output: 23
print(add(2, "Boom"))    # Fails at run-time :-(
```

▷ Same in C++14 but compiled + static compile-time type-checking:

```cpp
auto add = [] (auto x, auto y) { return x + y; }

std::cout << add(2, 3) << std::endl;    // 5
std::cout << add("2"s, "3"s) << std::endl;    // 23
std::cout << add(2, "Boom"s) << std::endl;    // Does not compile :-(
```

▷ Automatic type inference for terse generic programming and type safety

– Without `template` keyword!
Generic variadic lambdas & operator interpolation

```cpp
#include <iostream>
#include <string>

using namespace std::string_literals;

// Define an adder on anything.
// Use new C++14 generic variadic lambda syntax
auto add = [] (auto... args) {
    // Use new C++17 operator folding syntax
    return (... + args);
};

int main() {
    std::cout << "The result is: " << add(1, 2, 3) << std::endl;
    std::cout << "The result is: " << add("begin"s, "end"s) << std::endl;
}
```

Terse generic programming and type safety

– Without `template` keyword!
Complete example of matrix addition in OpenCL SYCL

```cpp
#include <CL/sycl.hpp>
#include <iostream>
using namespace cl::sycl;

constexpr size_t N = 2;
constexpr size_t M = 3;
using Matrix = float[N][M];

// Compute sum of matrices a and b into c
int main() {
    Matrix a = {{1, 2, 3}, {4, 5, 6}};
    Matrix b = {{2, 3, 4}, {5, 6, 7}};
    Matrix c;

    // Create a queue to work on default device
    queue q;
    // Wrap some buffers around our data
    buffer A { &a[0][0], range { N, M } };
    buffer B { &b[0][0], range { N, M } };
    buffer C { &c[0][0], range { N, M } };

    // Enqueue some computation kernel task
    q.submit([&](handler& cgh) {
        // Define the data used/produced
        auto ka = A.get_access<access::mode::read>(cgh);
        auto kb = B.get_access<access::mode::read>(cgh);
        auto kc = C.get_access<access::mode::write>(cgh);
        // Create & call kernel named "mat_add"
        cgh.parallel_for<class mat_add>(range { N, M },
        [=](id<2> i) { kc[i] = ka[i] + kb[i]; })
    }); // End of our commands for this queue
    return 0;
}
```

Complete example of matrix addition in OpenCL SYCL
SYCL 2.2 = pure C++17 DSEL

- Implement concepts useful for heterogeneous computing
- Asynchronous task graph
- Hierarchical parallelism & kernel-side enqueue
- Queues to direct computations on devices
- Single-source programming model
 - Take advantage of CUDA on steroids & OpenMP simplicity and power
 - Compiled for host and device(s)
 - Enabling the creation of C++ higher level programming models & C++ templated libraries
 - System-level programming (SYstemCL)
- Buffers to define location-independent storage
- Accessors to express usage for buffers and pipes: read/write/...
 - No explicit data motion
 - Automatic overlapping of communication/computation
- Hierarchical storage
 - Rely on C++ allocator to specify storage (SVM...)
 - Usual OpenCL-style global/local/private
- Most modern C++ features available for OpenCL
 - Programming interface based on abstraction of OpenCL components (data management, error handling...)
 - Provide OpenCL interoperability
- Directly executable DSEL
 - Host fall-back & emulation for free
 - No specific compiler needed for experimenting on host
 - Debug and symmetry for SIMD/multithread on host
Known implementations of SYCL

➢ ComputeCpp by Codeplay https://www.codeplay.com/products/computecpp
 – Most advanced SYCL 1.2 implementation
 – Outlining compiler generating SPIR
 – Run on any OpenCL device and CPU
 – Can run TensorFlow SYCL

➢ sycl-gtx https://github.com/ProGTX/sycl-gtx
 – Open source
 – No (outlining) compiler ➔ use some macros with different syntax

➢ triSYCL https://github.com/triSYCL/triSYCL
triSYCL

- Open Source SYCL 1.2/2.2
- Uses C++17 templated classes
- Used by Khronos to define the SYCL and OpenCL C++ standard
 - Languages are now too complex to be defined without implementing...
- On-going implementation started at AMD and now led by Xilinx
- https://github.com/triSYCL/triSYCL
- OpenMP for host parallelism
- Boost.Compute for OpenCL interaction
- Prototype of device compiler for Xilinx FPGA
TensorFlow SYCL

- Initial TensorFlow version from Google supports CPU & nVidia GPU with CUDA
- Other devices with XLA compiler
- SYCL version started in 2015 by Codeplay
 - CUDA is single-source C++, SYCL too, easier to use than OpenCL C/C++
 - Joint effort by Codeplay, Google, Xilinx, Oracle…
 - Upstreamed directly in https://github.com/tensorflow/tensorflow

- Eigen: C++ library with mathematical & tensor operations
 - Use template metaprogramming to do kernel fusion
 - Extended with SYCL devices and SYCL memory management

- Tensorflow
 - Add SYCL devices

- Developed and tested with Codeplay ComputeCpp
 - Interesting to test with another SYCL implementation: triSYCL
Eigen

Puts the “tensor” in TensorFlow

C++ template library for linear algebra
- Tensor module developed by Google and the SYCL extension by Codeplay
- Single-source
- Multiple devices available: Eigen thread pool, CUDA, SYCL
- Lazy evaluation and kernel fusion built-in
- Explicit scheduler
- Follow CUDA low-level memory management 😎
- 2 previous points do not fully take advantage of SYCL high-level concepts

Worked with ComputeCPP and now triSYCL
- Available upstream: https://bitbucket.org/eigen/eigen
- Reuse triSYCL CMake module from the SYCL Parallel STL open-source project
SYCL Eigen (computing \((a + b) * b\) with tensors)

```cpp
std::vector<cl::sycl::device> devices = Eigen::get_sycl_supported_devices();
QueueInterface queueInterface(devices[0]);
auto s_device = Eigen::SyclDevice(&queueInterface);

// Define the shape of the rank 3 tensors
IndexType sizeDim1 = 100, sizeDim2 = 20, sizeDim3 = 20;
Eigen::array<IndexType, 3> tensorRange = { { sizeDim1, sizeDim2, sizeDim3 } };
Eigen::Tensor<DataType, 3, DataLayout, IndexType> in1 { tensorRange };
Eigen::Tensor<DataType, 3, DataLayout, IndexType> in2 { tensorRange };
Eigen::Tensor<DataType, 3, DataLayout, IndexType> out { tensorRange };
Eigen::Tensor<DataType, 3, DataLayout, IndexType> out_host { tensorRange };

// Fill tensors with random values
in1.setRandom();
in2.setRandom();

// Allocate device memory for input and output tensors
auto gpu_in1_data = static_cast<DataType*>(s_device.allocate(in1.dimensions().TotalSize() * sizeof(DataType)));
auto gpu_in2_data = static_cast<DataType*>(s_device.allocate(in2.dimensions().TotalSize() * sizeof(DataType)));
auto gpu_out_data = static_cast<DataType*>(s_device.allocate(out.dimensions().TotalSize() * sizeof(DataType)));

// Create TensorMap from device memory
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1 { gpu_in1_data, tensorRange };
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2 { gpu_in2_data, tensorRange };
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType>> gpu_out { gpu_out_data, tensorRange };

// Copy the input data to the device
s_device.memcpyHostToDevice(gpu_in1_data, in1.data(), (in1.dimensions().TotalSize()) * sizeof(DataType));
s_device.memcpyHostToDevice(gpu_in2_data, in2.data(), (in2.dimensions().TotalSize()) * sizeof(DataType));
// c = (a + b) * b done on the sycl_device
gpu_out.device(s_device) = (gpu_in1 + gpu_in2) * gpu_in2;
// Copy the data back to the host
s_device.memcpyDeviceToHost(gpu_out_data, out.data(), (out.dimensions().TotalSize()) * sizeof(DataType));
// c = (a + b) * b done on the CPU
out_host = (in1 + in2) * in2;
```
import tensorflow as tf

dss = tf.InteractiveSession()

file_writer = tf.summary.FileWriter('logs', sess.graph)

To output a new version of the graph:
def ug():
 file_writer.add_graph(sess.graph)
 file_writer.flush()

coeff = tf.constant(3.0, tf.float32, name = "Coeff")
a = tf.placeholder(tf.float32, name = "A")
b = tf.placeholder(tf.float32, name = "B")

with tf.device(tf.DeviceSpec(device_type="SYCL")):
 product = tf.multiply(coeff, a, name = "Mul")

with tf.device(tf.DeviceSpec(device_type="CPU")):
 linear_model = tf.add(product, b, name = "Add")

print(sess.run(linear_model, {a: 3, b: 4.5}))

ug()

13.5
TensorFlow SYCL example 2
TensorFlow SYCL example 2

```
hidden1 = nn_layer1(hidden10, [5, 5, 32, 64], [64],
    'layer-1-1')
hidden21 = nn_layer2(hidden20, [5, 5, 16, 64], [64],
    'layer-2-1')

h_pool11_flat = tf.reshape(hidden11, [-1, 7*7*64])
hidden_concat = tf.concat([h_pool11_flat, h_pool21_flat], 1)
W_fc1 = weight_variable([[7 * 7 * 64] + (7 * 7 * 64),
    2048])

b_fc1 = bias_variable([2048])

W_fc2 = weight_variable([2048, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
diff = tf.nn.softmax_cross_entropy_with_logits(
    labels=y_, logits=y_conv)
cross_entropy = tf.reduce_mean(diff)

[...]
```
TensorFlow on FPGA

- TensorFlow CUDA is written with GPU target in mind…
- TensorFlow SYCL implementation
 - Keeps the TensorFlow single-source C++ operators
 - Changes the executors, memory management and host-device transfers
- SYCL brings functional portability on top of OpenCL
 - Unfortunately no performance portability across various architectures (FPGA…)
 - But there are SYCL & OpenCL standard ways to optimize to a given target
- But there are already optimized OpenCL DNN around…
SYCL → Very generic parallel model

Allows interaction with OpenCL/Vulkan/OpenGL without overhead

Keeps the high-level features of SYCL
- No explicit buffer transfer
- Task and data dependency graphs
- Templated C++ code
 ...

The user can call any existing OpenCL kernel
- Even HLS C++ & RTL Xilinx FPGA kernels
- Avoid writing painful OpenCL C/C++ host code
OpenCL built-in kernels

- OpenCL built-in kernels are very common in FPGA world

- Written in Verilog/VHDL or Vivado HLS C++
 - But with SDAccel OpenCL kernel interface

- Typical use cases
 - Kernel libraries
 - Linear algebra
 - Machine learning
 - Computer vision
 - Direct access to hardware: wire-speed Ethernet…

- SYCL OpenCL interoperability mode can be used to simplify usage of these kernels
Using OpenCL interoperability mode in SYCL

```cpp
#include <CL/sycl.hpp>
using namespace cl::sycl;

constexpr size_t N = 3;
using Vector = float[N];

int test_main(int argc, char *argv[]) {
    Vector a = {1, 2, 3};
    Vector b = {5, 6, 8};
    Vector c;
    // Construct the queue from the default OpenCL one
    queue q { boost::compute::system::default_queue() };
    // Create buffers from a & b vectors
    buffer<float> A { std::begin(a), std::end(a) };
    buffer<float> B { std::begin(b), std::end(b) };
    // A buffer of N float using the storage of c
    buffer<float> C { c, N };
    // Construct an OpenCL program from the source string
    auto program = boost::compute::program::create_with_source(R"(
        __kernel void vector_add(const __global float *a,
        const __global float *b,
        __global float *c, int offset) {
            c[get_global_id(0)] = a[get_global_id(0)] + b[get_global_id(0)] + offset;
        }
    ")" , boost::compute::system::default_context());
    // Build a kernel from the OpenCL kernel
    program.build();
    // Get the OpenCL kernel
    kernel k { boost::compute::kernel { program, "vector_add" } };
    // Launch the vector parallel addition
    q.submit([&](handler &cgh) {
        cgh.set_args(A.get_access<access::mode::read>(cgh),
                    B.get_access<access::mode::read>(cgh),
                    C.get_access<access::mode::write>(cgh),
                    cl::sycl::cl_int { 42 });
        cgh.parallel_for(N, k);
    });
    // End of our commands for this queue
    // Buffer C goes out of scope and copies back values to c
    std::cout << std::endl << "Result:"
    for (auto e : c) std::cout << e << " ";
    std::cout << std::endl;
    return 0;
}
```

// Launch the vector parallel addition
q.submit([&](handler &cgh) {
 /* The host-device copies are managed transparently by these accessors: */
 cgh.set_args(A.get_access<access::mode::read>(cgh),
 B.get_access<access::mode::read>(cgh),
 C.get_access<access::mode::write>(cgh),
 cl::sycl::cl_int { 42 });
 cgh.parallel_for(N, k);
});
```
```
Addiling OpenCL interoperability to Eigen

Goal → Introduce the ability to use native OpenCL kernels in Eigen

Using OpenCL kernels:
– Use existing optimised kernels (for FPGA)
– Target specific accelerators (FPGA too 😊)

SYCL OpenCL interoperability mode allows that possibility!

Implemented as a new Eigen operation
– Takes an arbitrary number of inputs
– User-provided OpenCL file and kernel name
– Accepts binary or OpenCL source file
– Can use dynamically SDx xoɔc on Xilinx platform
 • Beware of the compilation time at the first run 😊

nativeOCL(void** arg_list, size_t arg_num, std::string kernel_name, std::string file_name, bool is_bin)
Eigen code using new OpenCL interoperability mode

```cpp
auto arg1_device_ptr = static_cast<float*>(sycl_device.allocate(arg1.dimensions().TotalSize()*sizeof(float)));
auto arg2_device_ptr = static_cast<float*>(sycl_device.allocate(arg2.dimensions().TotalSize()*sizeof(float)));
auto arg3_device_ptr = static_cast<float*>(sycl_device.allocate(arg3.dimensions().TotalSize()*sizeof(float)));
sycl_device.memcpyHostToDevice(arg1_device_ptr, arg1.data(), (arg1.dimensions().TotalSize())*sizeof(float));
sycl_device.memcpyHostToDevice(arg2_device_ptr, arg2.data(), (arg2.dimensions().TotalSize())*sizeof(float));
sycl_device.memcpyHostToDevice(arg3_device_ptr, arg3.data(), (arg3.dimensions().TotalSize())*sizeof(float));
auto kernel_res_device_ptr = static_cast<float*>(sycl_device.allocate(kernel_res.dimensions().TotalSize()*sizeof(float)));
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout, IndexType>> arg1_device_map(arg1_device_ptr, arg1.dimensions());
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout, IndexType>> kernel_res_device_map(kernel_res_device_ptr, kernel_res.dimensions());
const void* arg_tab[2];
arg_tab[0] = arg2_device_ptr;
arg_tab[1] = arg3_device_ptr;

The OpenCL Kernel:

```c
__kernel void vector_add(__global float* a, const __global float* b, const __global float* c, const __global float* d) {
 a[get_global_id(0)] = b[get_global_id(0)] + (c[get_global_id(0)] * d[get_global_id(0)]);
}
```
OpenCL interoperability with Tensorflow

A Tensorflow operation was also added

- Uses the Eigen operation in the back-end
- We get a Python interface for free!

```python
conf = tf.ConfigProto(allow_soft_placement=False)
sess = tf.InteractiveSession(config=conf)

with tf.device('/cpu:0'):
 in1 = tf.fill([6,3,2], 18.0, name="in1")
 in2 = tf.fill([6,3,2], 12.0, name="in2")
 in3 = tf.fill([6,3,2], 2.0, name="in3")

with tf.device('/device:SYCL:0'):
 result = tf.user_ops.ocl_native_op(input_list=[in1, in2, in3], output_type=tf.float32, shape=[6,3,2],
 file_name="/path/to/kernel.cl", kernel_name="vector_add", is_binary=False)

print(result.eval())
```

TensorBoard graph:
Multi-SYCL device & OpenCL kernels

import tensorflow as tf

def testOclOp(self):
    conf = tf.ConfigProto(allow_soft_placement=False, device_count={'SYCL': 3})
    sess = tf.InteractiveSession(config=conf)

    with tf.device('/cpu:0'):
        arg1 = tf.fill([6,3,2], 11.5, name="arg1")
        arg2 = tf.fill([6,3,2], 10.5, name="arg2")
        arg3 = tf.fill([6,3,2], 5.0, name="arg3")
        arg4 = tf.fill([6,3,2], 2.0, name="arg4")
        arg5 = tf.fill([6,3,2], 2.0, name="arg5")

    with tf.device('/device:SYCL:0'):
        add_node = arg1 + arg2

    with tf.device('/device:SYCL:2'):
        mul_node = tf.user_ops.ocl_native_op(input_list=[arg3, arg4], output_type=tf.float32, shape=[6,3,2],
                                             file_name="/path/to/VecMul.cl", kernel_name="vector_mul", is_binary=False)

    with tf.device('/device:SYCL:1'):
        result = tf.user_ops.ocl_native_op(input_list=[add_node, mul_node, arg5], output_type=tf.float32, shape=[6,3,2],
                                            file_name="/path/to/VecAddMul.xclbin", kernel_name="vector_add_mul", is_binary=True)

    res = sess.run([result])
    print(res[0])
    writer = tf.summary.FileWriter('/tmp/tensorflow/logs/test', sess.graph)
    writer.close()
Multi-SYCL device & OpenCL kernels
Can use smaller data types than the ones available in TensorFlow

**DoReFa-Net (Pruned) – AlexNet like**

- 3915 Images/sec inference
- 1b Weights, 2b Activations
- 8.54 TOPS @ 109Mhz
- 0.432msec latency

- Amazon AWS F1 instance - 1x Xilinx VU9P FPGA
- Host source: C++, with Khronos OpenCL C++ bindings
- Kernel source: Xilinx Vivado HLS C++ with OpenCL-compatible kernel API
SYCL execution model is based on OpenCL similar to CUDA

Eigen operators unchanged from CUDA to SYCL
- Use same coding style with explicit work-item & work-group management
- From CUDA low-level thread blocks and __syncthread()

Not efficient in triSYCL on CPU because it is pure C++
- No de-SPMD operation like in PoCL or ComputeCpp...
- Require 1 CPU thread/work-item just in case of barrier
- triSYCL has no way to figure out there is a barrier or not

TensorFlow SYCL has minimal change compare to CUDA
Example of CPU-unfriendly explicit work-item in SYCL

```cpp
my_queue.submit([&](handler &cgh) {
 // Use of local memory through an accessor
 using local_acc = cl::sycl::accessor<int, 1, cl::sycl::mode::read_write, cl::sycl::access::target::local>;
 local_acc local_accessor { cl::sycl::range<1> { 8 }, cgh };

 // Iterate over 8 work-groups of 8 work-items each
 cgh.parallel_for(nd_range<1> { range<1> { 8 }, range<1> { 8 } }, [=](nd_item<1> item) {
 int global_id = item.get_global(0);
 int local_id = item.get_local(0);
 // Fill the local memory
 local_accessor[local_id] = global_id;

 // Synchronise between work-items (bad on CPU)
 item.barrier(access::fence_space::local);

 // Use the memory filled before
 for (unsigned i = local_id - 1; i <= local_id + 1; i++) {
 if (i > 0 && i < item.get_local_range().size())
 output[global_id] += local_accessor[i];
 }
 });
});
```
my_queue.submit([&](handler &cgh) {  
    // Issue 5 work-groups of 4 work-items each
    cgh.parallel_for_work_group(range<1> { 5 }, range<1> { 4 }, [=](group<1> myGroup) {  
        // [work-group code]
        // Variable shared between work-items
        int myLocal[4];
        // Issue parallel sets of 4 work-items
        parallel_for_work_item(myGroup, [=](item<1> myItem) {  
            myLocal[myItem.get(0)] = myItem.get_linear_id();
        });
        // Implicit barrier here
        // Carry value across loops
        // Issue parallel sets of 4 work-items
        parallel_for_work_item(myGroup, [=](item<1> myItem) {  
            // [work-item code]
            auto local_id = myItem.get(0);
            for (unsigned i = local_id - 1; i <= local_id + 1; i++) {
                if (i > 0 && i < myGroup.get(0))
                    output[myItem.get_linear_id()] += myLocal[i];
            }
        });
    });
});
What’s Next?

- Finish setting up Jenkins node in Google infrastructure
  - Insure that other commits do not break SYCL & triSYCL port
  - Already a ComputeCpp node
  - Issue with firewall at Xilinx for now
- Improve triSYCL/HLS/SDAccel integration
- Continue integrating OpenCL interoperability in Eigen/Tensorflow
- Optimise the host execution further
- Add FPGA-tailored features inside SYCL & TensorFlow
  - Arbitrary precision and fixed point types
Conclusion

- Upstreamed TensorFlow can use CUDA and SYCL for accelerators
- TensorFlow SYCL opens TensorFlow to Khronos realm
- SYCL brings pure modern C++ abstraction for heterogeneous computing
- Codeplay ComputeCpp is the way to go for TensorFlow SYCL on GPU
- But open-source triSYCL is making progress…
  - triSYCL for CPU: 78 failing tests among 1152
  - triSYCL for accelerators & FPGA: not mature enough for direct Eigen & TensorFlow
  - triSYCL OpenCL native node allows explicit access to OpenCL kernels
    - Enable TensorFlow interconnection with OpenCL-compatible accelerators
    - Can be defined as source, binary or built-in kernels
    - Allows connection with optimized OpenCL ABI machine-learning libraries