X3DOM
Getting declarative (X)3D into HTML

WebGL BOF, Siggraph 2010

Johannes Behr & Yvonne Jung

Virtual and Augmented Reality Group, Fraunhofer IGD, Darmstadt, Germany
johannes.behr@igd.fraunhofer.de
“Future of web3D” Panel 2008 (Web3D symposium)
Vladimir Vukicevic presented Canvas3D/WebGL

Pro:
- User-agent service => **Plugin-free** approach
- OpenGL(-ES) proved itself as **excellent Graphics API**

Con:
- **Efficiency**: Spend too many (battery) resources to manage your scene?
- **Concepts**: HTML Developer has to deal with GLSL and 4x4 matrices.
- **Metadata**: Index and search “content” on WebGL-Apps?

HTML5 Specification:

12.2 **Declarative 3D scenes**
Embedding 3D imagery into XHTML documents is the domain of X3D, or technologies based on **X3D** that are namespace aware.
Idea: Declarative (X)3D in HTML
Embed a live scenegraph in the DOM

```html
<!DOCTYPE html >
<html >
  <body>
    <h1>Hello X3DOM World</h1>
    <x3d xmlns='…' profile='HTML' >
      <scene>
        <shape>
          <box></box>
        </shape>
      </scene>
    </x3d>
  </body>
</html>
```
HTML/DOM Profile
Reduce X3D to 3D visualization component for HTML5

General Goal:
⇒ Utilizes HTML/JS/CSS for scripting and interaction
⇒ Reduced complexity and implementation effort
⇒ Reduces X3DOM to visualization component for 3D like SVG for 2D
 ⇒ 2 Profiles: HTML and HTML-Tiny/WebSG

"HTML"-Profile (Extends "Interchange" Profile): ~ 80 nodes
 Full runtime with anim., navigation and asynchronous data fetching
 No X3D-Script, Proto, High-Level Sensor-nodes
 Declarative and explicit shader material

"HTML-Tiny" or "WebSG"-Profile: ~ 15 nodes
 No Runtime at all: Just redraw on changes
 Generic <mesh> node without vertex semantics
 Only explicit shader material
Implementation

JS-Layer: Supports native, X3D/SAI-Plugin or WebGL
<!DOCTYPE html >
<html >
 <head>
 <link rel="stylesheet" type="text/css" href="x3dom.css" />
 <script type="text/javascript" src="x3dom.js"></script>
 </head>
 <body>
 <h1>HTML5 Hello World</h1>
 <x3d xmlns="…" profile='…' backend='…' >
 <scene>
 ...
 </scene>
 </x3d>
 </body>
</html>
DOM Manipulation
Node appending and removal

HTML/X3D code:

```html
...
<group id='root'></group>
...```

HTML-Script to add nodes:

```javascript
trans = document.createElement('Transform');
trans.setAttribute('translation', '1 2 3');
document.getElementById('root').appendChild(trans);
```

HTML-Script to remove nodes:

```javascript
document.getElementById('root').removeChild(trans);
```
DOM Manipulation
Field updates with setAttribute() or SAI-Field

HTML/X3D code:

```html
...
 <material id='mat'></material>
 ...
 <coordinate id='coord' point='5.6 3 87, 8.8 8.4 3.2, ...' ></coordinate>
 ...
```

Generic HTML-Script with `setAttribute()`: also useful for libs like jQuery
```
document.getElementById('mat').setAttribute('diffuseColor','red');
```

HTML-Script using SAI-Field interface: X3D JS-binding for more efficiency
```
var saiField = document.getElementById('coord).getField('point');
saiField[4711].x = 0.815;
```
HTML Events

User Interaction through DOM Events

Supports interaction with standard HTML-Events. Supports ancient (Netscape2) and addEventListener() interfaces.

```xml
<x3d xmlns="...">
 <Scene>
 <Shape>
 <Appearance>
 <Material id='mat' diffuseColor='red' />
 </Appearance>
 <Box onclick="document.getElementById('mat').diffuseColor='green'" />
 </Shape>
 </Scene>
</x3d>
```
DOM Manipulation
CSS 3D Transforms

CSS 3D Transforms Module Level 3; W3C Draft
Utilized to transform and update `<transform>` nodes

```css
<style type="text/css">
 #trans {
 -webkit-animation: spin 8s infinite linear;
 }
 @-webkit-keyframes spin {
 from { -webkit-transform: rotateY(0); }
 to { -webkit-transform: rotateY(-360deg); }
 }
</style>

<transform id="trans">
 <transform style="-webkit-transform: rotateY(45deg);">
 ...
</transform>
```

…
Applications
Application show-case
Facebook Friendgraph in 3D
Application show-case
Thematic data on climate change in cities
Conclusions – UserAgent

General:
JS performance is sufficient for a large number of applications.
(Almost) consistent support for **DOM Level 2 mutation** event types.
Missing:
  - CSS 3D Transform and CSS Animation support in all UA
  - information about the original image-format in Image object.
  - Spatial-Audio API.

WebGL:
WebGL performance and features are very impressive today.
Missing:
  - Support in all released UAs (especially on mobile devices)
  - depth/floating-point texture (also for FBO)
  - picking, shadow, multipass
  - HDR-image loader
Conclusions – X3DOM

X3DOM (pronounced X-Freedom) is an experimental open source framework and runtime to support the ongoing discussion in the Web3D and W3C communities how an integration of HTML5 and declarative 3D content could look like.

Targeted Application Area:
Declarative content design
Builds on an HTML5 layer
Application concepts map well to generic scenegraph
Thanks!

Questions?

System:

www.x3dom.org