System-level optimization in the embedded graphics system.

Eisaku Ohbuchi
Digital Media Professionals Inc.
DMP products

IP cores

Tiny 3D graphics core
(OpenGL ES 1.1)
PICA200 Lite
PICA200 for FPGA

Advanced 3D graphics core
(OpenGL ES 1.1 + DMP extension)
PICA200

Programmable graphics IP core
(OpenGLES1.1, 2.0, OpenVG1.1)
SMAPH-S

Vector graphics IP core
(OpenVG1.1)
SMAPH-F

Hybrid graphics core
(OpenGLES1.1 and OpenVG1.1)
SMAPH-H

OpenGL ES Learning Kit for Android
USD $49 (Academic License)
USD $98 (Personal License)
Embedded graphics system

- Embedded system applications
 - Not only mobile phone
 - There are many devices such as...

- Three key issues in embedded graphics systems
 - Performance
 - Power consumption
 - Software environment
Use case is different in each application

- Use case identification is very important for system optimization.

Amusement and gaming

Consumer electronics

Automotive
Performance

- Ideal situation
 - Low memory access latency and high bandwidth availability
 - Dedicated SRAM-like memory for graphics system
 - Enough CPU power

- Reality
 - Large memory access latency and limited bandwidth
 - DRAM-type main memory shared between CPU and GPU (UMA) due to system cost reduction
 - Restricted CPU power for graphics core control

- Solutions – Memory architecture and cache optimization.
Power consumption

Low power consumption techniques

- SoC power management
 - Power domain
 - Multi-Vth
 - Optimized clock and power control in synthesis and backend layout work. (including CTS optimization)
 - Automatic frequency control.

- Graphics module level optimization
 - Function level automatic clock gating
 - Automatic clock gating based on module activity
 - Root level clock gating
 - Driver software optimization
Software environment

- 3D graphics applications in embedded systems
 - Expanding from 3D gaming to user interface applications

```
Customer application and tools

Middleware
  Graphics engine

SDK
  Graphics Driver (OpenGLES1.1/2.0, OpenVG1.1)

OS
  Target HW
  Desktop emulator
```
In conclusion

- Three key issues in embedded graphics systems
 - Performance
 - Power consumption
 - Software environment

- Demand for graphics IP cores
 - Easy to achieve desired rendering performance in implemented system
 - Performance of catalog spec doesn't provide any information about that.
 - Easy to integrate into SoC
 - High quality, optimized software environment
Questions?