Khronos Mobile Graphics and Media Ecosystem

Neil Trevett
President, Khronos Group
Vice President Embedded Content, NVIDIA
Agenda for This Session

- All these slides available at www.khronos.org

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Company</th>
<th>Start</th>
<th>Finish</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neil Trevett</td>
<td>NVIDIA</td>
<td>17:45</td>
<td>18:10</td>
<td>Khronos Mobile Ecosystem</td>
</tr>
<tr>
<td>Erik Noreke</td>
<td>ST Ericsson</td>
<td>18:10</td>
<td>18:35</td>
<td>Launch of OpenSL ES 1.0</td>
</tr>
<tr>
<td>Dave Shreiner</td>
<td>ARM</td>
<td>18:35</td>
<td>18:55</td>
<td>Introduction to OpenGL ES</td>
</tr>
<tr>
<td>Questions</td>
<td>All</td>
<td>18:55</td>
<td>19:00</td>
<td></td>
</tr>
</tbody>
</table>
Mobile Platform Media Evolution

Media processing is becoming central to mobile experience. Graphics and media will become as pervasive as they are on the PC.
Mobile Media Fragmentation

• Every handset is unique from the programmers perspective
 - Differences in operating system functions, Java implementations and media functionality

 Symbian 7, 8, 9, UIQ, S60
 PocketPC / Windows Mobile / WinCE
 Linux variants – Android, Limo
 Java MIDP-1, MIDP-2, JSR fragmentation
 RTOS – Nucleus, Synergy
 Brew, WIPI, MAC OS X

Severe platform fragmentation
ISVs need to port to and support 100s (even 1000s) of source variants of each title
What Standards Does Khronos Create?

- “Foundation-Level” acceleration APIs
 - Needed on every platform to support an ecosystem of middleware and applications
- Low-level access to processor silicon
 - Designed with strong silicon vendor participation
- Cross-vendor software portability
 - API abstractions just high enough to hide implementation specifics
- Established focus on graphics, media and parallel compute acceleration
 - 3D, vector 2D, video, imaging, audio, heterogenous parallel programming APIs…

Khronos APIs create the foundation of an ecosystem that enable applications to be PORTABLE and ACCELERATED on diverse silicon platforms.
Advantages of Mobile Graphics Acceleration

Faster Performance at Higher Quality
Hardware delivers smoother interaction with much better looking graphics

Less Power
Hardware accelerators exploit media pipeline parallelism and caching for a x10 increase in power efficiency over software

Better User Experience
Smaller screens need more advanced graphics processing per pixel
Pervasive OpenGL ES

- OpenGL ES has become the most widely deployed 3D API
 - Widely used in devices from almost every major OEM
 - Consoles, Personal Navigation, Personal Media Players, Automotive, Set-Top Boxes, Mobile Internet Devices, Netbooks

Mobile OS that have adopted OpenGL ES as their native 3D API
OpenCL and the Khronos Ecosystem

Desktop 3D Ecosystem

Parallel computing and visualization in scientific and consumer applications

Streamlined APIs for mobile and embedded graphics, media and compute acceleration

Coherent mobile graphics and media stack with rich media interoperability

Umbrella specifications for mobile application portability
OpenVG - Accelerated Vector Graphics

• OpenVG is the industry’s first native Bezier rendering API
 - Enables a new class of hardware acceleration – Bezier primitives – not polygons

• Primarily used to accelerate higher-level engines such as Flash and SVG
 - OpenVG is an OpenGL-style, low-level API – but many artists prefer tools over programming

OpenGL ES
Accurately represents
PERSPECTIVE and
LIGHTING
using 3D polygons

OpenVG
Accurately represents
SHAPE and COLOR
using 2D Bezier Curves

Applications and UI
SVG/Flash/
Font Packages etc..

Hardware Acceleration
OpenVG 1.1

- OpenVG 1.1 specification publicly released at SIGGRAPH Asia 2008
 - Together with open source sample implementation and full Conformance Test Suite

- OpenVG 1.1 Conformance Test
 - Comprehensive set of tests (~900 test cases) – all must be passed

- Major features
 - Adobe Flash 7 / Flash Lite 3 support
 - Glyph API for hardware accelerated text rendering
 - Multi-sampled anti-aliasing
Flash Acceleration with OpenVG 1.1

- Adobe is a strong participant in the OpenVG working group
 - Helping to ensure that OpenVG 1.1 provides effective Flash acceleration
- OpenVG support is now included in Flash Lite 3.1 engine
 - Provides approximately 5x speed-up over software at 1/10 the power
Glyph API

• Many applications require high-quality scalable text
 - User interfaces, SVG, PDF or E-book readers, GPS and mapping, web-browsers

• Glyphs are complex 2D shapes
 - Can be scaled down to very small sizes and minor variations in pixel coverage and / or glyph positioning may significantly affect legibility and perceived text quality

• Glyph API enables text-specific rendering optimizations
 - Auto-hinting of glyph outlines, modified filter kernels for anti-aliased text rendering
 - Missing pixel recovery for monochrome rendering mode

• CPU and bandwidth-efficient commands to use cached font data
 - Complex text layout support, including kerning, glyph variants and positional adjustments
 - Use both vector outlines and bitmap images to display characters

Unoptimized

abcdefghijklmnopqrstuvwxyz

Optimized using Glyph API

abcdefghijklmnopqrstuvwxyz
OpenVG Implementations

- There are a wide range of OpenVG implementations possible
 - Depending on the price point and target device architecture

- 3D GPUs can accelerate both OpenVG and OpenGL ES APIs
 - With interoperability through EGL
OpenMAX Applications

- **OpenMAX AL provides fastest development and enhanced portability**
 - High-level, object-oriented abstractions for record/play applications

- **OpenMAX IL provides more flexibility and low-level hardware access**
 - For expert developers, no high-level or convenience functions

- **OpenMAX IL can be used by the native media framework**
 - Framework can be used to implement and extend OpenMAX AL

Applications may use OpenMAX AL, OpenMAX IL or the native media framework

OpenMAX AL may be implemented independently and not layered over OpenMAX IL

Media Frameworks
 E.g. GStreamer
OpenMAX IL Example Graph

- Standardized component interfaces enable flexible media graphs
- Includes multi-stream synchronization
- Allows for custom plug-ins

Example: MPEG-4 video synchronized with AAC audio decode
Mobile Umbrella Specifications

• Individual APIs define domain specific media acceleration
 - OpenGL ES for 3D, OpenMAX for video and images etc.

• Latest mobile applications want to MIX media types
 - E.g. route live video into a composited 3D user interface

• For portability of mixed-media need to define how the APIs work together
 - E.g. how to transfer video data from OpenMAX into OpenGL ES

• Umbrella specs define and CONFORMANCE TEST trans-API operation
 - Creates a reliable, cross-vendor media-stack definition
EGL

- **EGL abstracts access to rendering surfaces**
 - Interfaces Khronos rendering APIs to native platform window system
 - A derivative of the WGL Windows abstraction API

- **Emerging role as a communication hub between handheld APIs**
 - Sharing images via EGLImage extensions
 - EGLSync objects for inter-API fences and other signalling

- **Can create rendering surfaces into which multiple client APIs can draw**
 - Enables high-performance, accelerated, mixed-mode 2D and 3D rendering
 - Using OpenGL ES and OpenVG

- **EGL 1.3 was released in December 2006 – supports OpenGL ES**
 - OpenKODE 1.0 uses EGL 1.3 PLUS EGL extensions to integrate OpenVG PLUS
 - Lock Surface EGL extension for direct blitting of software rendering applications to the screen

- **EGL 1.4 integrated OpenVG and Lock Surface into core EGL**
 - In spring 2008
Directions for EGL 1.5

- Create EGLImage within EGL
 - Pre-declare uses => guaranteed image compatibility

- Share images with OpenMAX
 - Add EGLImage video data formats (YUV)

- Stream images between APIs
 - Queue of images with producer/consumer operations

- EGLSync objects
 - Inter-API fences and other signalling

Without EGLImage the game must copy the OpenMAX buffer into an OpenGL ES texture

Data copy wastes cycles and space

An EGLImage surface can be used as both the destination of the decode and a texture without copying the data
Platform vendors can choose to ship more than just individual APIs
- Provide conformance tested multi-API programming platforms

1. OpenKOGS – integrated media stack – due in 2009
- Defines reliable trans-API interoperability through EGL for OpenGL ES, OpenVG, OpenMAX

2. OpenKODE = OpenKOGS plus OS abstraction API
- OpenKODE Core is Posix-like API for application portability across mobile operating systems

Native Applications
(e.g. Browsers, Games, Navigation, Media)

<table>
<thead>
<tr>
<th>UI/Widget Toolkits</th>
<th>3D Gaming Engines</th>
<th>Flash/SVG/Font Engines</th>
<th>TV/Video/Audio Engines</th>
</tr>
</thead>
</table>

Embedded 3D
Vector 2D
Streaming Media
Enhanced Audio
Surfaces and synch

Graphics stack umbrella spec – defines levels of media API and EGL to be present and tests trans-API interoperability

Source portability umbrella specification – adds OpenKODE Core OS abstraction API
OpenKODE Core

• OS Abstraction layer - familiar to POSIX and C Programmers
 - “POSIX ES” – drawing on C89, C99
 - Some added functionality – events and IO functions

• Genuinely implementable across all major mobile operating systems
 - No small feat!
 - A lot of mobile OS knowledge encapsulated in the API

• Threads, Events, Utilities, Math, Time and Timers, File system, Strings, Networking, Input/Output, Windowing
 - Full functionally for rich-media applications

• Lightweight – typically less than 100KB
 - Adds no significant performance overhead
 - OpenKODE Core is NOT a layer between application and media APIs
OpenKODE – Source Portability

Applications are portable to any OpenKODE-enabled platform

Royalty-free open standard for rich media source portability

Platforms can use any OS and silicon vendor

Compositing
User Interfaces

Games and
Game Engines

Flash and SVG
Players

TV and Video
Stacks

Camera
Applications
Raising 2D and 3D Visual Quality

State-of-the-art APIs enable compelling consumer displays
Advanced functionality, fast interactivity and extremely high quality

High-quality 2D graphics and test using OpenVG

Video and image processing with OpenMAX

High-quality 3D displays using OpenGL ES

Older generation APIs
Provide rudimentary graphics functionality and quality
Composition and User Interface

- The iPhone’s success has demonstrates the importance of good UI
 - Ease of discovery and use of device capabilities and resources drives revenue

- Strong focus on using mobile graphics acceleration for advanced UI
 - Accelerated rendering, window management and composition

- Accelerated composition
 - Bringing multiple screen elements together with complete flexibility on the display

- Multiple Khronos initiatives underway to enable composition
 - OpenWF – for autonomous, hardware-based 2D composition
 - KDWM – OpenKODE extensions to enable 3D composition using OpenGL ES
Client applications can behave as if they are writing directly to the display and render into off-screen, cross-process texture surfaces using standard OpenGL ES, OpenMAX, EGL and OpenKODE calls.

Multiple off-screen surfaces are composited to the screen using OpenGL ES for flexible 3D screen layout and transitions.

KDWM extensions to OpenKODE Core enables Compositor applications or window systems to communicate EVENTS and off-screen BUFFER HANDLES to client applications.

OpenKODE Screen Composition
3D UI Composition Initiative

• KDWM – “the Compositors OpenKODE”
 - Extensions to OpenKODE Core - based on existing EGL and OpenKODE mechanisms
 - Off-screen surface allocation and cross process surface handle communication
 - Cross-process event dispatch
 - Proposed by NVIDIA as OpenKODE Core extension
Why Are Khronos Standards Key?

• “Foundation Level” APIs to enable software to effectively use silicon
 - State-of-the-art, fundamental functionality needed on every platform
 - Non-proprietary – application portability across many platforms

• Architected to be cost and power efficient
 - Ideal for embedded markets

• Hundreds of man years invested
 - Beyond any single company now to produce specifications of this breadth and depth
 - Leverage the investment of the silicon industry in creating standards-based drivers sets

• Royalty-free
 - Khronos is committed to generating market opportunities for its members and the industry

• More information and slides at www.khronos.org