31. Limits

Limits are implementation-dependent minimums, maximums, and other device characteristics that an application may need to be aware of.

Note

Limits are reported via the basic VkPhysicalDeviceLimits structure, as well as the extensible structure VkPhysicalDeviceProperties2, which was added in [VK_KHR_get_physical_device_properties2] and included in Vulkan 1.1. When limits are added in future Vulkan versions or extensions, each extension should introduce one new limit structure, if needed. This structures can be added to the pNext chain of the VkPhysicalDeviceProperties2 structure.

The VkPhysicalDeviceLimits structure is defined as:

typedef struct VkPhysicalDeviceLimits {
    uint32_t              maxImageDimension1D;
    uint32_t              maxImageDimension2D;
    uint32_t              maxImageDimension3D;
    uint32_t              maxImageDimensionCube;
    uint32_t              maxImageArrayLayers;
    uint32_t              maxTexelBufferElements;
    uint32_t              maxUniformBufferRange;
    uint32_t              maxStorageBufferRange;
    uint32_t              maxPushConstantsSize;
    uint32_t              maxMemoryAllocationCount;
    uint32_t              maxSamplerAllocationCount;
    VkDeviceSize          bufferImageGranularity;
    VkDeviceSize          sparseAddressSpaceSize;
    uint32_t              maxBoundDescriptorSets;
    uint32_t              maxPerStageDescriptorSamplers;
    uint32_t              maxPerStageDescriptorUniformBuffers;
    uint32_t              maxPerStageDescriptorStorageBuffers;
    uint32_t              maxPerStageDescriptorSampledImages;
    uint32_t              maxPerStageDescriptorStorageImages;
    uint32_t              maxPerStageDescriptorInputAttachments;
    uint32_t              maxPerStageResources;
    uint32_t              maxDescriptorSetSamplers;
    uint32_t              maxDescriptorSetUniformBuffers;
    uint32_t              maxDescriptorSetUniformBuffersDynamic;
    uint32_t              maxDescriptorSetStorageBuffers;
    uint32_t              maxDescriptorSetStorageBuffersDynamic;
    uint32_t              maxDescriptorSetSampledImages;
    uint32_t              maxDescriptorSetStorageImages;
    uint32_t              maxDescriptorSetInputAttachments;
    uint32_t              maxVertexInputAttributes;
    uint32_t              maxVertexInputBindings;
    uint32_t              maxVertexInputAttributeOffset;
    uint32_t              maxVertexInputBindingStride;
    uint32_t              maxVertexOutputComponents;
    uint32_t              maxTessellationGenerationLevel;
    uint32_t              maxTessellationPatchSize;
    uint32_t              maxTessellationControlPerVertexInputComponents;
    uint32_t              maxTessellationControlPerVertexOutputComponents;
    uint32_t              maxTessellationControlPerPatchOutputComponents;
    uint32_t              maxTessellationControlTotalOutputComponents;
    uint32_t              maxTessellationEvaluationInputComponents;
    uint32_t              maxTessellationEvaluationOutputComponents;
    uint32_t              maxGeometryShaderInvocations;
    uint32_t              maxGeometryInputComponents;
    uint32_t              maxGeometryOutputComponents;
    uint32_t              maxGeometryOutputVertices;
    uint32_t              maxGeometryTotalOutputComponents;
    uint32_t              maxFragmentInputComponents;
    uint32_t              maxFragmentOutputAttachments;
    uint32_t              maxFragmentDualSrcAttachments;
    uint32_t              maxFragmentCombinedOutputResources;
    uint32_t              maxComputeSharedMemorySize;
    uint32_t              maxComputeWorkGroupCount[3];
    uint32_t              maxComputeWorkGroupInvocations;
    uint32_t              maxComputeWorkGroupSize[3];
    uint32_t              subPixelPrecisionBits;
    uint32_t              subTexelPrecisionBits;
    uint32_t              mipmapPrecisionBits;
    uint32_t              maxDrawIndexedIndexValue;
    uint32_t              maxDrawIndirectCount;
    float                 maxSamplerLodBias;
    float                 maxSamplerAnisotropy;
    uint32_t              maxViewports;
    uint32_t              maxViewportDimensions[2];
    float                 viewportBoundsRange[2];
    uint32_t              viewportSubPixelBits;
    size_t                minMemoryMapAlignment;
    VkDeviceSize          minTexelBufferOffsetAlignment;
    VkDeviceSize          minUniformBufferOffsetAlignment;
    VkDeviceSize          minStorageBufferOffsetAlignment;
    int32_t               minTexelOffset;
    uint32_t              maxTexelOffset;
    int32_t               minTexelGatherOffset;
    uint32_t              maxTexelGatherOffset;
    float                 minInterpolationOffset;
    float                 maxInterpolationOffset;
    uint32_t              subPixelInterpolationOffsetBits;
    uint32_t              maxFramebufferWidth;
    uint32_t              maxFramebufferHeight;
    uint32_t              maxFramebufferLayers;
    VkSampleCountFlags    framebufferColorSampleCounts;
    VkSampleCountFlags    framebufferDepthSampleCounts;
    VkSampleCountFlags    framebufferStencilSampleCounts;
    VkSampleCountFlags    framebufferNoAttachmentsSampleCounts;
    uint32_t              maxColorAttachments;
    VkSampleCountFlags    sampledImageColorSampleCounts;
    VkSampleCountFlags    sampledImageIntegerSampleCounts;
    VkSampleCountFlags    sampledImageDepthSampleCounts;
    VkSampleCountFlags    sampledImageStencilSampleCounts;
    VkSampleCountFlags    storageImageSampleCounts;
    uint32_t              maxSampleMaskWords;
    VkBool32              timestampComputeAndGraphics;
    float                 timestampPeriod;
    uint32_t              maxClipDistances;
    uint32_t              maxCullDistances;
    uint32_t              maxCombinedClipAndCullDistances;
    uint32_t              discreteQueuePriorities;
    float                 pointSizeRange[2];
    float                 lineWidthRange[2];
    float                 pointSizeGranularity;
    float                 lineWidthGranularity;
    VkBool32              strictLines;
    VkBool32              standardSampleLocations;
    VkDeviceSize          optimalBufferCopyOffsetAlignment;
    VkDeviceSize          optimalBufferCopyRowPitchAlignment;
    VkDeviceSize          nonCoherentAtomSize;
} VkPhysicalDeviceLimits;

The VkPhysicalDeviceLimits are properties of the physical device. These are available in the limits member of the VkPhysicalDeviceProperties structure which is returned from vkGetPhysicalDeviceProperties.

  • maxImageDimension1D is the maximum dimension (width) supported for all images created with an imageType of VK_IMAGE_TYPE_1D.

  • maxImageDimension2D is the maximum dimension (width or height) supported for all images created with an imageType of VK_IMAGE_TYPE_2D and without VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags.

  • maxImageDimension3D is the maximum dimension (width, height, or depth) supported for all images created with an imageType of VK_IMAGE_TYPE_3D.

  • maxImageDimensionCube is the maximum dimension (width or height) supported for all images created with an imageType of VK_IMAGE_TYPE_2D and with VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT set in flags.

  • maxImageArrayLayers is the maximum number of layers (arrayLayers) for an image.

  • maxTexelBufferElements is the maximum number of addressable texels for a buffer view created on a buffer which was created with the VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT or VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT set in the usage member of the VkBufferCreateInfo structure.

  • maxUniformBufferRange is the maximum value that can be specified in the range member of any VkDescriptorBufferInfo structures passed to a call to vkUpdateDescriptorSets for descriptors of type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC.

  • maxStorageBufferRange is the maximum value that can be specified in the range member of any VkDescriptorBufferInfo structures passed to a call to vkUpdateDescriptorSets for descriptors of type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC.

  • maxPushConstantsSize is the maximum size, in bytes, of the pool of push constant memory. For each of the push constant ranges indicated by the pPushConstantRanges member of the VkPipelineLayoutCreateInfo structure, (offset + size) must be less than or equal to this limit.

  • maxMemoryAllocationCount is the maximum number of device memory allocations, as created by vkAllocateMemory, which can simultaneously exist.

  • maxSamplerAllocationCount is the maximum number of sampler objects, as created by vkCreateSampler, which can simultaneously exist on a device.

  • bufferImageGranularity is the granularity, in bytes, at which buffer or linear image resources, and optimal image resources can be bound to adjacent offsets in the same VkDeviceMemory object without aliasing. See Buffer-Image Granularity for more details.

  • sparseAddressSpaceSize is the total amount of address space available, in bytes, for sparse memory resources. This is an upper bound on the sum of the size of all sparse resources, regardless of whether any memory is bound to them.

  • maxBoundDescriptorSets is the maximum number of descriptor sets that can be simultaneously used by a pipeline. All DescriptorSet decorations in shader modules must have a value less than maxBoundDescriptorSets. See Descriptor Sets.

  • maxPerStageDescriptorSamplers is the maximum number of samplers that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. A descriptor is accessible to a shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Sampler and Combined Image Sampler.

  • maxPerStageDescriptorUniformBuffers is the maximum number of uniform buffers that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. A descriptor is accessible to a shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Uniform Buffer and Dynamic Uniform Buffer.

  • maxPerStageDescriptorStorageBuffers is the maximum number of storage buffers that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage Buffer and Dynamic Storage Buffer.

  • maxPerStageDescriptorSampledImages is the maximum number of sampled images that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

  • maxPerStageDescriptorStorageImages is the maximum number of storage images that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. See Storage Image, and Storage Texel Buffer.

  • maxPerStageDescriptorInputAttachments is the maximum number of input attachments that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. A descriptor is accessible to a pipeline shader stage when the stageFlags member of the VkDescriptorSetLayoutBinding structure has the bit for that shader stage set. These are only supported for the fragment stage. See Input Attachment.

  • maxPerStageResources is the maximum number of resources that can be accessible to a single shader stage in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, or VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. For the fragment shader stage the framebuffer color attachments also count against this limit.

  • maxDescriptorSetSamplers is the maximum number of samplers that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_SAMPLER or VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER count against this limit. See Sampler and Combined Image Sampler.

  • maxDescriptorSetUniformBuffers is the maximum number of uniform buffers that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. See Uniform Buffer and Dynamic Uniform Buffer.

  • maxDescriptorSetUniformBuffersDynamic is the maximum number of dynamic uniform buffers that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC count against this limit. See Dynamic Uniform Buffer.

  • maxDescriptorSetStorageBuffers is the maximum number of storage buffers that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. See Storage Buffer and Dynamic Storage Buffer.

  • maxDescriptorSetStorageBuffersDynamic is the maximum number of dynamic storage buffers that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC count against this limit. See Dynamic Storage Buffer.

  • maxDescriptorSetSampledImages is the maximum number of sampled images that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, or VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER count against this limit. See Combined Image Sampler, Sampled Image, and Uniform Texel Buffer.

  • maxDescriptorSetStorageImages is the maximum number of storage images that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, or VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER count against this limit. See Storage Image, and Storage Texel Buffer.

  • maxDescriptorSetInputAttachments is the maximum number of input attachments that can be included in a pipeline layout. Descriptors with a type of VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT count against this limit. See Input Attachment.

  • maxVertexInputAttributes is the maximum number of vertex input attributes that can be specified for a graphics pipeline. These are described in the array of VkVertexInputAttributeDescription structures that are provided at graphics pipeline creation time via the pVertexAttributeDescriptions member of the VkPipelineVertexInputStateCreateInfo structure. See Vertex Attributes and Vertex Input Description.

  • maxVertexInputBindings is the maximum number of vertex buffers that can be specified for providing vertex attributes to a graphics pipeline. These are described in the array of VkVertexInputBindingDescription structures that are provided at graphics pipeline creation time via the pVertexBindingDescriptions member of the VkPipelineVertexInputStateCreateInfo structure. The binding member of VkVertexInputBindingDescription must be less than this limit. See Vertex Input Description.

  • maxVertexInputAttributeOffset is the maximum vertex input attribute offset that can be added to the vertex input binding stride. The offset member of the VkVertexInputAttributeDescription structure must be less than or equal to this limit. See Vertex Input Description.

  • maxVertexInputBindingStride is the maximum vertex input binding stride that can be specified in a vertex input binding. The stride member of the VkVertexInputBindingDescription structure must be less than or equal to this limit. See Vertex Input Description.

  • maxVertexOutputComponents is the maximum number of components of output variables which can be output by a vertex shader. See Vertex Shaders.

  • maxTessellationGenerationLevel is the maximum tessellation generation level supported by the fixed-function tessellation primitive generator. See Tessellation.

  • maxTessellationPatchSize is the maximum patch size, in vertices, of patches that can be processed by the tessellation control shader and tessellation primitive generator. The patchControlPoints member of the VkPipelineTessellationStateCreateInfo structure specified at pipeline creation time and the value provided in the OutputVertices execution mode of shader modules must be less than or equal to this limit. See Tessellation.

  • maxTessellationControlPerVertexInputComponents is the maximum number of components of input variables which can be provided as per-vertex inputs to the tessellation control shader stage.

  • maxTessellationControlPerVertexOutputComponents is the maximum number of components of per-vertex output variables which can be output from the tessellation control shader stage.

  • maxTessellationControlPerPatchOutputComponents is the maximum number of components of per-patch output variables which can be output from the tessellation control shader stage.

  • maxTessellationControlTotalOutputComponents is the maximum total number of components of per-vertex and per-patch output variables which can be output from the tessellation control shader stage.

  • maxTessellationEvaluationInputComponents is the maximum number of components of input variables which can be provided as per-vertex inputs to the tessellation evaluation shader stage.

  • maxTessellationEvaluationOutputComponents is the maximum number of components of per-vertex output variables which can be output from the tessellation evaluation shader stage.

  • maxGeometryShaderInvocations is the maximum invocation count supported for instanced geometry shaders. The value provided in the Invocations execution mode of shader modules must be less than or equal to this limit. See Geometry Shading.

  • maxGeometryInputComponents is the maximum number of components of input variables which can be provided as inputs to the geometry shader stage.

  • maxGeometryOutputComponents is the maximum number of components of output variables which can be output from the geometry shader stage.

  • maxGeometryOutputVertices is the maximum number of vertices which can be emitted by any geometry shader.

  • maxGeometryTotalOutputComponents is the maximum total number of components of output, across all emitted vertices, which can be output from the geometry shader stage.

  • maxFragmentInputComponents is the maximum number of components of input variables which can be provided as inputs to the fragment shader stage.

  • maxFragmentOutputAttachments is the maximum number of output attachments which can be written to by the fragment shader stage.

  • maxFragmentDualSrcAttachments is the maximum number of output attachments which can be written to by the fragment shader stage when blending is enabled and one of the dual source blend modes is in use. See Dual-Source Blending and dualSrcBlend.

  • maxFragmentCombinedOutputResources is the total number of storage buffers, storage images, and output buffers which can be used in the fragment shader stage.

  • maxComputeSharedMemorySize is the maximum total storage size, in bytes, available for variables declared with the Workgroup storage class in shader modules (or with the shared storage qualifier in GLSL) in the compute shader stage. The amount of storage consumed by the variables declared with the Workgroup storage class is implementation-dependent. However, the amount of storage consumed may not exceed the largest block size that would be obtained if all active variables declared with Workgroup storage class were assigned offsets in an arbitrary order by successively taking the smallest valid offset according to the Standard Storage Buffer Layout rules. (This is equivalent to using the GLSL std430 layout rules.)

  • maxComputeWorkGroupCount[3] is the maximum number of local workgroups that can be dispatched by a single dispatch command. These three values represent the maximum number of local workgroups for the X, Y, and Z dimensions, respectively. The workgroup count parameters to the dispatch commands must be less than or equal to the corresponding limit. See Dispatching Commands.

  • maxComputeWorkGroupInvocations is the maximum total number of compute shader invocations in a single local workgroup. The product of the X, Y, and Z sizes, as specified by the LocalSize execution mode in shader modules or by the object decorated by the WorkgroupSize decoration, must be less than or equal to this limit.

  • maxComputeWorkGroupSize[3] is the maximum size of a local compute workgroup, per dimension. These three values represent the maximum local workgroup size in the X, Y, and Z dimensions, respectively. The x, y, and z sizes, as specified by the LocalSize execution mode or by the object decorated by the WorkgroupSize decoration in shader modules, must be less than or equal to the corresponding limit.

  • subPixelPrecisionBits is the number of bits of subpixel precision in framebuffer coordinates xf and yf. See Rasterization.

  • subTexelPrecisionBits is the number of bits of precision in the division along an axis of an image used for minification and magnification filters. 2subTexelPrecisionBits is the actual number of divisions along each axis of the image represented. Sub-texel values calculated during image sampling will snap to these locations when generating the filtered results.

  • mipmapPrecisionBits is the number of bits of division that the LOD calculation for mipmap fetching get snapped to when determining the contribution from each mip level to the mip filtered results. 2mipmapPrecisionBits is the actual number of divisions.

  • maxDrawIndexedIndexValue is the maximum index value that can be used for indexed draw calls when using 32-bit indices. This excludes the primitive restart index value of 0xFFFFFFFF. See fullDrawIndexUint32.

  • maxDrawIndirectCount is the maximum draw count that is supported for indirect draw calls. See multiDrawIndirect.

  • maxSamplerLodBias is the maximum absolute sampler LOD bias. The sum of the mipLodBias member of the VkSamplerCreateInfo structure and the Bias operand of image sampling operations in shader modules (or 0 if no Bias operand is provided to an image sampling operation) are clamped to the range [-maxSamplerLodBias,+maxSamplerLodBias]. See [samplers-mipLodBias].

  • maxSamplerAnisotropy is the maximum degree of sampler anisotropy. The maximum degree of anisotropic filtering used for an image sampling operation is the minimum of the maxAnisotropy member of the VkSamplerCreateInfo structure and this limit. See [samplers-maxAnisotropy].

  • maxViewports is the maximum number of active viewports. The viewportCount member of the VkPipelineViewportStateCreateInfo structure that is provided at pipeline creation must be less than or equal to this limit.

  • maxViewportDimensions[2] are the maximum viewport dimensions in the X (width) and Y (height) dimensions, respectively. The maximum viewport dimensions must be greater than or equal to the largest image which can be created and used as a framebuffer attachment. See Controlling the Viewport.

  • viewportBoundsRange[2] is the [minimum, maximum] range that the corners of a viewport must be contained in. This range must be at least [-2 × size, 2 × size - 1], where size = max(maxViewportDimensions[0], maxViewportDimensions[1]). See Controlling the Viewport.

    Note

    The intent of the viewportBoundsRange limit is to allow a maximum sized viewport to be arbitrarily shifted relative to the output target as long as at least some portion intersects. This would give a bounds limit of [-size + 1, 2 × size - 1] which would allow all possible non-empty-set intersections of the output target and the viewport. Since these numbers are typically powers of two, picking the signed number range using the smallest possible number of bits ends up with the specified range.

  • viewportSubPixelBits is the number of bits of subpixel precision for viewport bounds. The subpixel precision that floating-point viewport bounds are interpreted at is given by this limit.

  • minMemoryMapAlignment is the minimum required alignment, in bytes, of host visible memory allocations within the host address space. When mapping a memory allocation with vkMapMemory, subtracting offset bytes from the returned pointer will always produce an integer multiple of this limit. See Host Access to Device Memory Objects.

  • minTexelBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset member of the VkBufferViewCreateInfo structure for texel buffers. VkBufferViewCreateInfo::offset must be a multiple of this value.

  • minUniformBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset member of the VkDescriptorBufferInfo structure for uniform buffers. When a descriptor of type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER or VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC is updated, the offset must be an integer multiple of this limit. Similarly, dynamic offsets for uniform buffers must be multiples of this limit.

  • minStorageBufferOffsetAlignment is the minimum required alignment, in bytes, for the offset member of the VkDescriptorBufferInfo structure for storage buffers. When a descriptor of type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC is updated, the offset must be an integer multiple of this limit. Similarly, dynamic offsets for storage buffers must be multiples of this limit.

  • minTexelOffset is the minimum offset value for the ConstOffset image operand of any of the OpImageSample* or OpImageFetch* image instructions.

  • maxTexelOffset is the maximum offset value for the ConstOffset image operand of any of the OpImageSample* or OpImageFetch* image instructions.

  • minTexelGatherOffset is the minimum offset value for the Offset, ConstOffset, or ConstOffsets image operands of any of the OpImage*Gather image instructions.

  • maxTexelGatherOffset is the maximum offset value for the Offset, ConstOffset, or ConstOffsets image operands of any of the OpImage*Gather image instructions.

  • minInterpolationOffset is the minimum negative offset value for the offset operand of the InterpolateAtOffset extended instruction.

  • maxInterpolationOffset is the maximum positive offset value for the offset operand of the InterpolateAtOffset extended instruction.

  • subPixelInterpolationOffsetBits is the number of subpixel fractional bits that the x and y offsets to the InterpolateAtOffset extended instruction may be rounded to as fixed-point values.

  • maxFramebufferWidth is the maximum width for a framebuffer. The width member of the VkFramebufferCreateInfo structure must be less than or equal to this limit.

  • maxFramebufferHeight is the maximum height for a framebuffer. The height member of the VkFramebufferCreateInfo structure must be less than or equal to this limit.

  • maxFramebufferLayers is the maximum layer count for a layered framebuffer. The layers member of the VkFramebufferCreateInfo structure must be less than or equal to this limit.

  • framebufferColorSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the color sample counts that are supported for all framebuffer color attachments with floating- or fixed-point formats. There is no limit that specifies the color sample counts that are supported for all color attachments with integer formats.

  • framebufferDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the supported depth sample counts for all framebuffer depth/stencil attachments, when the format includes a depth component.

  • framebufferStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the supported stencil sample counts for all framebuffer depth/stencil attachments, when the format includes a stencil component.

  • framebufferNoAttachmentsSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the supported sample counts for a framebuffer with no attachments.

  • maxColorAttachments is the maximum number of color attachments that can be used by a subpass in a render pass. The colorAttachmentCount member of the VkSubpassDescription structure must be less than or equal to this limit.

  • sampledImageColorSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_USAGE_SAMPLED_BIT, and a non-integer color format.

  • sampledImageIntegerSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_USAGE_SAMPLED_BIT, and an integer color format.

  • sampledImageDepthSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_USAGE_SAMPLED_BIT, and a depth format.

  • sampledImageStencilSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, usage containing VK_IMAGE_USAGE_SAMPLED_BIT, and a stencil format.

  • storageImageSampleCounts is a bitmask1 of VkSampleCountFlagBits indicating the sample counts supported for all 2D images created with VK_IMAGE_TILING_OPTIMAL, and usage containing VK_IMAGE_USAGE_STORAGE_BIT.

  • maxSampleMaskWords is the maximum number of array elements of a variable decorated with the SampleMask built-in decoration.

  • timestampComputeAndGraphics specifies support for timestamps on all graphics and compute queues. If this limit is set to VK_TRUE, all queues that advertise the VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT in the VkQueueFamilyProperties::queueFlags support VkQueueFamilyProperties::timestampValidBits of at least 36. See Timestamp Queries.

  • timestampPeriod is the number of nanoseconds required for a timestamp query to be incremented by 1. See Timestamp Queries.

  • maxClipDistances is the maximum number of clip distances that can be used in a single shader stage. The size of any array declared with the ClipDistance built-in decoration in a shader module must be less than or equal to this limit.

  • maxCullDistances is the maximum number of cull distances that can be used in a single shader stage. The size of any array declared with the CullDistance built-in decoration in a shader module must be less than or equal to this limit.

  • maxCombinedClipAndCullDistances is the maximum combined number of clip and cull distances that can be used in a single shader stage. The sum of the sizes of any pair of arrays declared with the ClipDistance and CullDistance built-in decoration used by a single shader stage in a shader module must be less than or equal to this limit.

  • discreteQueuePriorities is the number of discrete priorities that can be assigned to a queue based on the value of each member of VkDeviceQueueCreateInfo::pQueuePriorities. This must be at least 2, and levels must be spread evenly over the range, with at least one level at 1.0, and another at 0.0. See Queue Priority.

  • pointSizeRange[2] is the range [minimum,maximum] of supported sizes for points. Values written to variables decorated with the PointSize built-in decoration are clamped to this range.

  • lineWidthRange[2] is the range [minimum,maximum] of supported widths for lines. Values specified by the lineWidth member of the VkPipelineRasterizationStateCreateInfo or the lineWidth parameter to vkCmdSetLineWidth are clamped to this range.

  • pointSizeGranularity is the granularity of supported point sizes. Not all point sizes in the range defined by pointSizeRange are supported. This limit specifies the granularity (or increment) between successive supported point sizes.

  • lineWidthGranularity is the granularity of supported line widths. Not all line widths in the range defined by lineWidthRange are supported. This limit specifies the granularity (or increment) between successive supported line widths.

  • strictLines specifies whether lines are rasterized according to the preferred method of rasterization. If set to VK_FALSE, lines may be rasterized under a relaxed set of rules. If set to VK_TRUE, lines are rasterized as per the strict definition. See Basic Line Segment Rasterization.

  • standardSampleLocations specifies whether rasterization uses the standard sample locations as documented in Multisampling. If set to VK_TRUE, the implementation uses the documented sample locations. If set to VK_FALSE, the implementation may use different sample locations.

  • optimalBufferCopyOffsetAlignment is the optimal buffer offset alignment in bytes for vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer. The per texel alignment requirements are enforced, but applications should use the optimal alignment for optimal performance and power use.

  • optimalBufferCopyRowPitchAlignment is the optimal buffer row pitch alignment in bytes for vkCmdCopyBufferToImage and vkCmdCopyImageToBuffer. Row pitch is the number of bytes between texels with the same X coordinate in adjacent rows (Y coordinates differ by one). The per texel alignment requirements are enforced, but applications should use the optimal alignment for optimal performance and power use.

  • nonCoherentAtomSize is the size and alignment in bytes that bounds concurrent access to host-mapped device memory.

1

For all bitmasks of VkSampleCountFlagBits, the sample count limits defined above represent the minimum supported sample counts for each image type. Individual images may support additional sample counts, which are queried using vkGetPhysicalDeviceImageFormatProperties as described in Supported Sample Counts.

Bits which may be set in the sample count limits returned by VkPhysicalDeviceLimits, as well as in other queries and structures representing image sample counts, are:

typedef enum VkSampleCountFlagBits {
    VK_SAMPLE_COUNT_1_BIT = 0x00000001,
    VK_SAMPLE_COUNT_2_BIT = 0x00000002,
    VK_SAMPLE_COUNT_4_BIT = 0x00000004,
    VK_SAMPLE_COUNT_8_BIT = 0x00000008,
    VK_SAMPLE_COUNT_16_BIT = 0x00000010,
    VK_SAMPLE_COUNT_32_BIT = 0x00000020,
    VK_SAMPLE_COUNT_64_BIT = 0x00000040,
    VK_SAMPLE_COUNT_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
} VkSampleCountFlagBits;
  • VK_SAMPLE_COUNT_1_BIT specifies an image with one sample per pixel.

  • VK_SAMPLE_COUNT_2_BIT specifies an image with 2 samples per pixel.

  • VK_SAMPLE_COUNT_4_BIT specifies an image with 4 samples per pixel.

  • VK_SAMPLE_COUNT_8_BIT specifies an image with 8 samples per pixel.

  • VK_SAMPLE_COUNT_16_BIT specifies an image with 16 samples per pixel.

  • VK_SAMPLE_COUNT_32_BIT specifies an image with 32 samples per pixel.

  • VK_SAMPLE_COUNT_64_BIT specifies an image with 64 samples per pixel.

typedef VkFlags VkSampleCountFlags;

VkSampleCountFlags is a bitmask type for setting a mask of zero or more VkSampleCountFlagBits.

The VkPhysicalDeviceMultiviewProperties structure is defined as:

typedef struct VkPhysicalDeviceMultiviewProperties {
    VkStructureType    sType;
    void*              pNext;
    uint32_t           maxMultiviewViewCount;
    uint32_t           maxMultiviewInstanceIndex;
} VkPhysicalDeviceMultiviewProperties;

The members of the VkPhysicalDeviceMultiviewProperties structure describe the following implementation-dependent limits:

  • sType is the type of this structure.

  • pNext is NULL or a pointer to an extension-specific structure.

  • maxMultiviewViewCount is one greater than the maximum view index that can be used in a subpass.

  • maxMultiviewInstanceIndex is the maximum valid value of instance index allowed to be generated by a drawing command recorded within a subpass of a multiview render pass instance.

If the VkPhysicalDeviceMultiviewProperties structure is included in the pNext chain of VkPhysicalDeviceProperties2, it is filled with the implementation-dependent limits.

Valid Usage (Implicit)
  • sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES

The VkPhysicalDevicePointClippingProperties structure is defined as:

typedef struct VkPhysicalDevicePointClippingProperties {
    VkStructureType            sType;
    void*                      pNext;
    VkPointClippingBehavior    pointClippingBehavior;
} VkPhysicalDevicePointClippingProperties;

The members of the VkPhysicalDevicePointClippingProperties structure describe the following implementation-dependent limit:

  • sType is the type of this structure.

  • pNext is NULL or a pointer to an extension-specific structure.

  • pointClippingBehavior is a VkPointClippingBehavior value specifying the point clipping behavior supported by the implementation.

If the VkPhysicalDevicePointClippingProperties structure is included in the pNext chain of VkPhysicalDeviceProperties2, it is filled with the implementation-dependent limits.

Valid Usage (Implicit)
  • sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES

The VkPhysicalDeviceSubgroupProperties structure is defined as:

typedef struct VkPhysicalDeviceSubgroupProperties {
    VkStructureType           sType;
    void*                     pNext;
    uint32_t                  subgroupSize;
    VkShaderStageFlags        supportedStages;
    VkSubgroupFeatureFlags    supportedOperations;
    VkBool32                  quadOperationsInAllStages;
} VkPhysicalDeviceSubgroupProperties;

The members of the VkPhysicalDeviceSubgroupProperties structure describe the following implementation-dependent limits:

  • sType is the type of this structure.

  • pNext is NULL or a pointer to an extension-specific structure.

  • subgroupSize is the default number of invocations in each subgroup. subgroupSize is at least 1 if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT. subgroupSize is a power-of-two.

  • supportedStages is a bitfield of VkShaderStageFlagBits describing the shader stages that subgroup operations are supported in. supportedStages will have the VK_SHADER_STAGE_COMPUTE_BIT bit set if any of the physical device’s queues support VK_QUEUE_COMPUTE_BIT.

  • supportedOperations is a bitmask of VkSubgroupFeatureFlagBits specifying the sets of subgroup operations supported on this device. supportedOperations will have the VK_SUBGROUP_FEATURE_BASIC_BIT bit set if any of the physical device’s queues support VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT.

  • quadOperationsInAllStages is a boolean specifying whether quad subgroup operations are available in all stages, or are restricted to fragment and compute stages.

If the VkPhysicalDeviceSubgroupProperties structure is included in the pNext chain of VkPhysicalDeviceProperties2, it is filled with the implementation-dependent limits.

Valid Usage (Implicit)
  • sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES

Bits which can be set in VkPhysicalDeviceSubgroupProperties::supportedOperations to specify supported subgroup operations are:

typedef enum VkSubgroupFeatureFlagBits {
    VK_SUBGROUP_FEATURE_BASIC_BIT = 0x00000001,
    VK_SUBGROUP_FEATURE_VOTE_BIT = 0x00000002,
    VK_SUBGROUP_FEATURE_ARITHMETIC_BIT = 0x00000004,
    VK_SUBGROUP_FEATURE_BALLOT_BIT = 0x00000008,
    VK_SUBGROUP_FEATURE_SHUFFLE_BIT = 0x00000010,
    VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT = 0x00000020,
    VK_SUBGROUP_FEATURE_CLUSTERED_BIT = 0x00000040,
    VK_SUBGROUP_FEATURE_QUAD_BIT = 0x00000080,
    VK_SUBGROUP_FEATURE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
} VkSubgroupFeatureFlagBits;
  • VK_SUBGROUP_FEATURE_BASIC_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniform capability.

  • VK_SUBGROUP_FEATURE_VOTE_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformVote capability.

  • VK_SUBGROUP_FEATURE_ARITHMETIC_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformArithmetic capability.

  • VK_SUBGROUP_FEATURE_BALLOT_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformBallot capability.

  • VK_SUBGROUP_FEATURE_SHUFFLE_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformShuffle capability.

  • VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformShuffleRelative capability.

  • VK_SUBGROUP_FEATURE_CLUSTERED_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformClustered capability.

  • VK_SUBGROUP_FEATURE_QUAD_BIT specifies the device will accept SPIR-V shader modules containing the GroupNonUniformQuad capability.

typedef VkFlags VkSubgroupFeatureFlags;

VkSubgroupFeatureFlags is a bitmask type for setting a mask of zero or more VkSubgroupFeatureFlagBits.

The VkPhysicalDeviceProtectedMemoryProperties structure is defined as:

typedef struct VkPhysicalDeviceProtectedMemoryProperties {
    VkStructureType    sType;
    void*              pNext;
    VkBool32           protectedNoFault;
} VkPhysicalDeviceProtectedMemoryProperties;
  • sType is the type of this structure.

  • pNext is NULL or a pointer to an extension-specific structure.

  • protectedNoFault specifies the behavior of the implementation when protected memory access rules are broken. If protectedNoFault is VK_TRUE, breaking those rules will not result in process termination or device loss.

If the VkPhysicalDeviceProtectedMemoryProperties structure is included in the pNext chain of VkPhysicalDeviceProperties2, it is filled with a value indicating the implementation-dependent behavior.

Valid Usage (Implicit)
  • sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES

The VkPhysicalDeviceMaintenance3Properties structure is defined as:

typedef struct VkPhysicalDeviceMaintenance3Properties {
    VkStructureType    sType;
    void*              pNext;
    uint32_t           maxPerSetDescriptors;
    VkDeviceSize       maxMemoryAllocationSize;
} VkPhysicalDeviceMaintenance3Properties;

The members of the VkPhysicalDeviceMaintenance3Properties structure describe the following implementation-dependent limits:

  • sType is the type of this structure.

  • pNext is NULL or a pointer to an extension-specific structure.

  • maxPerSetDescriptors is a maximum number of descriptors (summed over all descriptor types) in a single descriptor set that is guaranteed to satisfy any implementation-dependent constraints on the size of a descriptor set itself. Applications can query whether a descriptor set that goes beyond this limit is supported using vkGetDescriptorSetLayoutSupport.

  • maxMemoryAllocationSize is the maximum size of a memory allocation that can be created, even if there is more space available in the heap.

If the VkPhysicalDeviceMaintenance3Properties structure is included in the pNext chain of VkPhysicalDeviceProperties2, it is filled with the implementation-dependent limits.

Valid Usage (Implicit)
  • sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES

31.1. Limit Requirements

The following table specifies the required minimum/maximum for all Vulkan graphics implementations. Where a limit corresponds to a fine-grained device feature which is optional, the feature name is listed with two required limits, one when the feature is supported and one when it is not supported. If an implementation supports a feature, the limits reported are the same whether or not the feature is enabled.

Table 29. Required Limit Types
Type Limit Feature

uint32_t

maxImageDimension1D

-

uint32_t

maxImageDimension2D

-

uint32_t

maxImageDimension3D

-

uint32_t

maxImageDimensionCube

-

uint32_t

maxImageArrayLayers

-

uint32_t

maxTexelBufferElements

-

uint32_t

maxUniformBufferRange

-

uint32_t

maxStorageBufferRange

-

uint32_t

maxPushConstantsSize

-

uint32_t

maxMemoryAllocationCount

-

uint32_t

maxSamplerAllocationCount

-

VkDeviceSize

bufferImageGranularity

-

VkDeviceSize

sparseAddressSpaceSize

sparseBinding

uint32_t

maxBoundDescriptorSets

-

uint32_t

maxPerStageDescriptorSamplers

-

uint32_t

maxPerStageDescriptorUniformBuffers

-

uint32_t

maxPerStageDescriptorStorageBuffers

-

uint32_t

maxPerStageDescriptorSampledImages

-

uint32_t

maxPerStageDescriptorStorageImages

-

uint32_t

maxPerStageDescriptorInputAttachments

-

uint32_t

maxPerStageResources

-

uint32_t

maxDescriptorSetSamplers

-

uint32_t

maxDescriptorSetUniformBuffers

-

uint32_t

maxDescriptorSetUniformBuffersDynamic

-

uint32_t

maxDescriptorSetStorageBuffers

-

uint32_t

maxDescriptorSetStorageBuffersDynamic

-

uint32_t

maxDescriptorSetSampledImages

-

uint32_t

maxDescriptorSetStorageImages

-

uint32_t

maxDescriptorSetInputAttachments

-

uint32_t

maxVertexInputAttributes

-

uint32_t

maxVertexInputBindings

-

uint32_t

maxVertexInputAttributeOffset

-

uint32_t

maxVertexInputBindingStride

-

uint32_t

maxVertexOutputComponents

-

uint32_t

maxTessellationGenerationLevel

tessellationShader

uint32_t

maxTessellationPatchSize

tessellationShader

uint32_t

maxTessellationControlPerVertexInputComponents

tessellationShader

uint32_t

maxTessellationControlPerVertexOutputComponents

tessellationShader

uint32_t

maxTessellationControlPerPatchOutputComponents

tessellationShader

uint32_t

maxTessellationControlTotalOutputComponents

tessellationShader

uint32_t

maxTessellationEvaluationInputComponents

tessellationShader

uint32_t

maxTessellationEvaluationOutputComponents

tessellationShader

uint32_t

maxGeometryShaderInvocations

geometryShader

uint32_t

maxGeometryInputComponents

geometryShader

uint32_t

maxGeometryOutputComponents

geometryShader

uint32_t

maxGeometryOutputVertices

geometryShader

uint32_t

maxGeometryTotalOutputComponents

geometryShader

uint32_t

maxFragmentInputComponents

-

uint32_t

maxFragmentOutputAttachments

-

uint32_t

maxFragmentDualSrcAttachments

dualSrcBlend

uint32_t

maxFragmentCombinedOutputResources

-

uint32_t

maxComputeSharedMemorySize

-

3 × uint32_t

maxComputeWorkGroupCount

-

uint32_t

maxComputeWorkGroupInvocations

-

3 × uint32_t

maxComputeWorkGroupSize

-

uint32_t

subPixelPrecisionBits

-

uint32_t

subTexelPrecisionBits

-

uint32_t

mipmapPrecisionBits

-

uint32_t

maxDrawIndexedIndexValue

fullDrawIndexUint32

uint32_t

maxDrawIndirectCount

multiDrawIndirect

float

maxSamplerLodBias

-

float

maxSamplerAnisotropy

samplerAnisotropy

uint32_t

maxViewports

multiViewport

2 × uint32_t

maxViewportDimensions

-

2 × float

viewportBoundsRange

-

uint32_t

viewportSubPixelBits

-

size_t

minMemoryMapAlignment

-

VkDeviceSize

minTexelBufferOffsetAlignment

-

VkDeviceSize

minUniformBufferOffsetAlignment

-

VkDeviceSize

minStorageBufferOffsetAlignment

-

int32_t

minTexelOffset

-

uint32_t

maxTexelOffset

-

int32_t

minTexelGatherOffset

shaderImageGatherExtended

uint32_t

maxTexelGatherOffset

shaderImageGatherExtended

float

minInterpolationOffset

sampleRateShading

float

maxInterpolationOffset

sampleRateShading

uint32_t

subPixelInterpolationOffsetBits

sampleRateShading

uint32_t

maxFramebufferWidth

-

uint32_t

maxFramebufferHeight

-

uint32_t

maxFramebufferLayers

-

VkSampleCountFlags

framebufferColorSampleCounts

-

VkSampleCountFlags

framebufferDepthSampleCounts

-

VkSampleCountFlags

framebufferStencilSampleCounts

-

VkSampleCountFlags

framebufferNoAttachmentsSampleCounts

-

uint32_t

maxColorAttachments

-

VkSampleCountFlags

sampledImageColorSampleCounts

-

VkSampleCountFlags

sampledImageIntegerSampleCounts

-

VkSampleCountFlags

sampledImageDepthSampleCounts

-

VkSampleCountFlags

sampledImageStencilSampleCounts

-

VkSampleCountFlags

storageImageSampleCounts

shaderStorageImageMultisample

uint32_t

maxSampleMaskWords

-

VkBool32

timestampComputeAndGraphics

-

float

timestampPeriod

-

uint32_t

maxClipDistances

shaderClipDistance

uint32_t

maxCullDistances

shaderCullDistance

uint32_t

maxCombinedClipAndCullDistances

shaderCullDistance

uint32_t

discreteQueuePriorities

-

2 × float

pointSizeRange

largePoints

2 × float

lineWidthRange

wideLines

float

pointSizeGranularity

largePoints

float

lineWidthGranularity

wideLines

VkBool32

strictLines

-

VkBool32

standardSampleLocations

-

VkDeviceSize

optimalBufferCopyOffsetAlignment

-

VkDeviceSize

optimalBufferCopyRowPitchAlignment

-

VkDeviceSize

nonCoherentAtomSize

-

Table 30. Required Limits
Limit Unsupported Limit Supported Limit Limit Type1

maxImageDimension1D

-

4096

min

maxImageDimension2D

-

4096

min

maxImageDimension3D

-

256

min

maxImageDimensionCube

-

4096

min

maxImageArrayLayers

-

256

min

maxTexelBufferElements

-

65536

min

maxUniformBufferRange

-

16384

min

maxStorageBufferRange

-

227

min

maxPushConstantsSize

-

128

min

maxMemoryAllocationCount

-

4096

min

maxSamplerAllocationCount

-

4000

min

bufferImageGranularity

-

131072

max

sparseAddressSpaceSize

0

231

min

maxBoundDescriptorSets

-

4

min

maxPerStageDescriptorSamplers

-

16

min

maxPerStageDescriptorUniformBuffers

-

12

min

maxPerStageDescriptorStorageBuffers

-

4

min

maxPerStageDescriptorSampledImages

-

16

min

maxPerStageDescriptorStorageImages

-

4

min

maxPerStageDescriptorInputAttachments

-

4

min

maxPerStageResources

-

128 2

min

maxDescriptorSetSamplers

-

96 8

min, n × PerStage

maxDescriptorSetUniformBuffers

-

72 8

min, n × PerStage

maxDescriptorSetUniformBuffersDynamic

-

8

min

maxDescriptorSetStorageBuffers

-

24 8

min, n × PerStage

maxDescriptorSetStorageBuffersDynamic

-

4

min

maxDescriptorSetSampledImages

-

96 8

min, n × PerStage

maxDescriptorSetStorageImages

-

24 8

min, n × PerStage

maxDescriptorSetInputAttachments

-

4

min

maxVertexInputAttributes

-

16

min

maxVertexInputBindings

-

16

min

maxVertexInputAttributeOffset

-

2047

min

maxVertexInputBindingStride

-

2048

min

maxVertexOutputComponents

-

64

min

maxTessellationGenerationLevel

0

64

min

maxTessellationPatchSize

0

32

min

maxTessellationControlPerVertexInputComponents

0

64

min

maxTessellationControlPerVertexOutputComponents

0

64

min

maxTessellationControlPerPatchOutputComponents

0

120

min

maxTessellationControlTotalOutputComponents

0

2048

min

maxTessellationEvaluationInputComponents

0

64

min

maxTessellationEvaluationOutputComponents

0

64

min

maxGeometryShaderInvocations

0

32

min

maxGeometryInputComponents

0

64

min

maxGeometryOutputComponents

0

64

min

maxGeometryOutputVertices

0

256

min

maxGeometryTotalOutputComponents

0

1024

min

maxFragmentInputComponents

-

64

min

maxFragmentOutputAttachments

-

4

min

maxFragmentDualSrcAttachments

0

1

min

maxFragmentCombinedOutputResources

-

4

min

maxComputeSharedMemorySize

-

16384

min

maxComputeWorkGroupCount

-

(65535,65535,65535)

min

maxComputeWorkGroupInvocations

-

128

min

maxComputeWorkGroupSize

-

(128,128,64)

min

subPixelPrecisionBits

-

4

min

subTexelPrecisionBits

-

4

min

mipmapPrecisionBits

-

4

min

maxDrawIndexedIndexValue

224-1

232-1

min

maxDrawIndirectCount

1

216-1

min

maxSamplerLodBias

-

2

min

maxSamplerAnisotropy

1

16

min

maxViewports

1

16

min

maxViewportDimensions

-

(4096,4096) 3

min

viewportBoundsRange

-

(-8192,8191) 4

(max,min)

viewportSubPixelBits

-

0

min

minMemoryMapAlignment

-

64

min

minTexelBufferOffsetAlignment

-

256

max

minUniformBufferOffsetAlignment

-

256

max

minStorageBufferOffsetAlignment

-

256

max

minTexelOffset

-

-8

max

maxTexelOffset

-

7

min

minTexelGatherOffset

0

-8

max

maxTexelGatherOffset

0

7

min

minInterpolationOffset

0.0

-0.5 5

max

maxInterpolationOffset

0.0

0.5 - (1 ULP) 5

min

subPixelInterpolationOffsetBits

0

4 5

min

maxFramebufferWidth

-

4096

min

maxFramebufferHeight

-

4096

min

maxFramebufferLayers

-

256

min

framebufferColorSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

framebufferDepthSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

framebufferStencilSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

framebufferNoAttachmentsSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

maxColorAttachments

-

4

min

sampledImageColorSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

sampledImageIntegerSampleCounts

-

VK_SAMPLE_COUNT_1_BIT

min

sampledImageDepthSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

sampledImageStencilSampleCounts

-

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

storageImageSampleCounts

VK_SAMPLE_COUNT_1_BIT

(VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT)

min

maxSampleMaskWords

-

1

min

timestampComputeAndGraphics

-

-

implementation dependent

timestampPeriod

-

-

duration

maxClipDistances

0

8

min

maxCullDistances

0

8

min

maxCombinedClipAndCullDistances

0

8

min

discreteQueuePriorities

-

2

min

pointSizeRange

(1.0,1.0)

(1.0,64.0 - ULP)6

(max,min)

lineWidthRange

(1.0,1.0)

(1.0,8.0 - ULP)7

(max,min)

pointSizeGranularity

0.0

1.0 6

max, fixed point increment

lineWidthGranularity

0.0

1.0 7

max, fixed point increment

strictLines

-

-

implementation dependent

standardSampleLocations

-

-

implementation dependent

optimalBufferCopyOffsetAlignment

-

-

recommendation

optimalBufferCopyRowPitchAlignment

-

-

recommendation

nonCoherentAtomSize

-

256

max

maxMultiviewViewCount

-

6

min

maxMultiviewInstanceIndex

-

227-1

min

maxPerSetDescriptors

-

1024

min

maxMemoryAllocationSize

-

230

min

1

The Limit Type column specifies the limit is either the minimum limit all implementations must support or the maximum limit all implementations must support. For bitmasks a minimum limit is the least bits all implementations must set, but they may have additional bits set beyond this minimum.

2

The maxPerStageResources must be at least the smallest of the following:

  • the sum of the maxPerStageDescriptorUniformBuffers, maxPerStageDescriptorStorageBuffers, maxPerStageDescriptorSampledImages, maxPerStageDescriptorStorageImages, maxPerStageDescriptorInputAttachments, maxColorAttachments limits, or

  • 128.

It may not be possible to reach this limit in every stage.

3

See maxViewportDimensions for the required relationship to other limits.

4

See viewportBoundsRange for the required relationship to other limits.

5

The values minInterpolationOffset and maxInterpolationOffset describe the closed interval of supported interpolation offsets: [minInterpolationOffset, maxInterpolationOffset]. The ULP is determined by subPixelInterpolationOffsetBits. If subPixelInterpolationOffsetBits is 4, this provides increments of (1/24) = 0.0625, and thus the range of supported interpolation offsets would be [-0.5, 0.4375].

6

The point size ULP is determined by pointSizeGranularity. If the pointSizeGranularity is 0.125, the range of supported point sizes must be at least [1.0, 63.875].

7

The line width ULP is determined by lineWidthGranularity. If the lineWidthGranularity is 0.0625, the range of supported line widths must be at least [1.0, 7.9375].

8

The minimum maxDescriptorSet* limit is n times the corresponding specification minimum maxPerStageDescriptor* limit, where n is the number of shader stages supported by the VkPhysicalDevice. If all shader stages are supported, n = 6 (vertex, tessellation control, tessellation evaluation, geometry, fragment, compute).