C Specification

The members of the VkPhysicalDeviceFloatControlsPropertiesKHR structure describe the following implementation-dependent limits:

typedef struct VkPhysicalDeviceFloatControlsPropertiesKHR {
    VkStructureType    sType;
    void*              pNext;
    VkBool32           separateDenormSettings;
    VkBool32           separateRoundingModeSettings;
    VkBool32           shaderSignedZeroInfNanPreserveFloat16;
    VkBool32           shaderSignedZeroInfNanPreserveFloat32;
    VkBool32           shaderSignedZeroInfNanPreserveFloat64;
    VkBool32           shaderDenormPreserveFloat16;
    VkBool32           shaderDenormPreserveFloat32;
    VkBool32           shaderDenormPreserveFloat64;
    VkBool32           shaderDenormFlushToZeroFloat16;
    VkBool32           shaderDenormFlushToZeroFloat32;
    VkBool32           shaderDenormFlushToZeroFloat64;
    VkBool32           shaderRoundingModeRTEFloat16;
    VkBool32           shaderRoundingModeRTEFloat32;
    VkBool32           shaderRoundingModeRTEFloat64;
    VkBool32           shaderRoundingModeRTZFloat16;
    VkBool32           shaderRoundingModeRTZFloat32;
    VkBool32           shaderRoundingModeRTZFloat64;
} VkPhysicalDeviceFloatControlsPropertiesKHR;

Members

  • separateDenormSettings is a boolean value indicating whether the implementation supports separate settings for 16-bit and 64-bit denormals.

  • separateRoundingModeSettings is a boolean value indicating whether the implementation supports separate rounding modes for 16-bit and 64-bit floating point instructions.

  • shaderSignedZeroInfNanPreserveFloat16 is a boolean value indicating whether sign of a zero, Nans and \(\pm\infty\) can be preserved in 16-bit floating-point computations. It also indicates whether the SignedZeroInfNanPreserve execution mode can be used for 16-bit floating-point types.

  • shaderSignedZeroInfNanPreserveFloat32 is a boolean value indicating whether sign of a zero, Nans and \(\pm\infty\) can be preserved in 32-bit floating-point computations. It also indicates whether the SignedZeroInfNanPreserve execution mode can be used for 32-bit floating-point types.

  • shaderSignedZeroInfNanPreserveFloat64 is a boolean value indicating whether sign of a zero, Nans and \(\pm\infty\) can be preserved in 64-bit floating-point computations. It also indicates whether the SignedZeroInfNanPreserve execution mode can be used for 64-bit floating-point types.

  • shaderDenormPreserveFloat16 is a boolean value indicating whether denormals can be preserved in 16-bit floating-point computations. It also indicates whether the DenormPreserve execution mode can be used for 16-bit floating-point types.

  • shaderDenormPreserveFloat32 is a boolean value indicating whether denormals can be preserved in 32-bit floating-point computations. It also indicates whether the DenormPreserve execution mode can be used for 32-bit floating-point types.

  • shaderDenormPreserveFloat64 is a boolean value indicating whether denormals can be preserved in 64-bit floating-point computations. It also indicates whether the DenormPreserve execution mode can be used for 64-bit floating-point types.

  • shaderDenormFlushToZeroFloat16 is a boolean value indicating whether denormals can be flushed to zero in 16-bit floating-point computations. It also indicates whether the DenormFlushToZero execution mode can be used for 16-bit floating-point types.

  • shaderDenormFlushToZeroFloat32 is a boolean value indicating whether denormals can be flushed to zero in 32-bit floating-point computations. It also indicates whether the DenormFlushToZero execution mode can be used for 32-bit floating-point types.

  • shaderDenormFlushToZeroFloat64 is a boolean value indicating whether denormals can be flushed to zero in 64-bit floating-point computations. It also indicates whether the DenormFlushToZero execution mode can be used for 64-bit floating-point types.

  • shaderRoundingModeRTEFloat16 is a boolean value indicating whether an implementation supports the round-to-nearest-even rounding mode for 16-bit floating-point arithmetic and conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be used for 16-bit floating-point types.

  • shaderRoundingModeRTEFloat32 is a boolean value indicating whether an implementation supports the round-to-nearest-even rounding mode for 32-bit floating-point arithmetic and conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be used for 32-bit floating-point types.

  • shaderRoundingModeRTEFloat64 is a boolean value indicating whether an implementation supports the round-to-nearest-even rounding mode for 64-bit floating-point arithmetic and conversion instructions. It also indicates whether the RoundingModeRTE execution mode can be used for 64-bit floating-point types.

  • shaderRoundingModeRTZFloat16 is a boolean value indicating whether an implementation supports the round-towards-zero rounding mode for 16-bit floating-point arithmetic and conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be used for 16-bit floating-point types.

  • shaderRoundingModeRTZFloat32 is a boolean value indicating whether an implementation supports the round-towards-zero rounding mode for 32-bit floating-point arithmetic and conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be used for 32-bit floating-point types.

  • shaderRoundingModeRTZFloat64 is a boolean value indicating whether an implementation supports the round-towards-zero rounding mode for 64-bit floating-point arithmetic and conversion instructions. It also indicates whether the RoundingModeRTZ execution mode can be used for 64-bit floating-point types.

Description

If the VkPhysicalDeviceFloatControlsPropertiesKHR structure is included in the pNext chain of VkPhysicalDeviceProperties2, it is filled with the implementation-dependent limits.

Valid Usage (Implicit)
  • sType must be VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR

See Also

VkBool32, VkStructureType

Document Notes

For more information, see the Vulkan Specification at URL

This page is extracted from the Vulkan Specification. Fixes and changes should be made to the Specification, not directly.

Copyright (c) 2014-2019 Khronos Group. This work is licensed under a Creative Commons Attribution 4.0 International License.