Copyright © 2007-2009 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of the Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or non-infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

SAMPLE CODE and EXAMPLES, as identified herein, are expressly depicted herein with a “grey” watermark and are included for illustrative purposes only and are expressly outside of the Scope as defined in Attachment A - Khronos Group Intellectual Property (IP) Rights Policy of the Khronos Group Membership Agreement. A Member or Promoter Member shall have no obligation to grant any licenses under any Necessary Patent Claims covering SAMPLE CODE and EXAMPLES.

Khronos, OpenKODE, OpenVG, OpenSL ES and OpenMAX are trademarks of the Khronos Group Inc. OpenCL is a trademark of Apple Inc., COLLADA is a trademark of Sony Computer Entertainment Inc. and OpenGL is a registered trademark of Silicon Graphics Inc. used under license by Khronos. All other product names, trademarks, and/or company names are used solely for identification and belong to their respective owners.
Table of Contents

PART 1: USER MANUAL .. 1

1 OVERVIEW .. 2

1.1 PURPOSE OF THIS DOCUMENT ... 2

1.1.1 About the Khronos Group .. 2

1.2 SCOPE ... 2

1.3 INTENDED AUDIENCE .. 2

1.4 A BRIEF HISTORY OF OPENSL ES .. 3

1.5 RELATIONSHIP TO OPENMAX AL 1.0 .. 3

1.6 CONVENTIONS USED ... 5

1.6.1 Parameter Range Notation ... 5

1.6.2 Format and Typographic Conventions ... 6

1.7 DEFINITION OF TERMS ... 6

1.8 ACKNOWLEDGEMENTS ... 6

2 FEATURES AND PROFILES ... 8

2.1 MOTIVATION .. 8

2.2 PROFILE DEFINITION .. 9

2.3 PROFILES ... 9

2.4 OPTIONALITY RULES OF FEATURES AND PROFILES .. 11

2.5 PROFILE NOTES ... 12

2.6 BEHAVIOR FOR UNSUPPORTED FEATURES ... 13

3 DESIGN OVERVIEW .. 14

3.1 OBJECT MODEL ... 14

3.1.1 Objects and Interfaces ... 14

3.1.2 Getters and Setters ... 16
3.1.3 Representation in Code .. 17
3.1.4 The SLObjectItf Interface .. 18
3.1.5 The Engine Object and SLEngineItf Interface ... 18
3.1.6 The Relationship Between Objects and Interfaces ... 19
3.1.7 The SLDynamicInterfaceManagementItf Interface .. 21
3.1.8 Resource Allocation ... 21

3.2.Threading Model ... 23
3.2.1 Mode of Operation .. 23
3.2.2 Thread Safety .. 23

3.3 Notifications .. 24

3.4 Error Reporting ... 24

3.5 Extensibility ... 25
3.5.1 Principles .. 25
3.5.2 Permitted Modifications to Physical Code .. 26
3.5.3 Extending Supported Interface Types ... 26
3.5.4 Extending Supported Object Types .. 26
3.5.5 Extending Method Parameter Ranges ... 27
3.5.6 Result Codes ... 27
3.5.7 Interface ID Allocation Scheme ... 27
3.5.8 Avoiding Naming Collisions ... 27

4 Functional Overview .. 29

4.1 Object Overview ... 29
4.1.1 Engine Object .. 29
4.1.1.1 Devices ... 30
4.1.2 Media Objects ... 30
4.1.2.1 Data Source and Sink Structures ... 30
4.1.3 Metadata Extractor Object ... 31
4.1.4 Audio Output Mix Object ... 31
4.1.5 LED Array Control Object ... 32
4.1.6 Vibration Control Object ... 32
4.2 SAMPLED AUDIO ... 33
 4.2.1 Recommended Codec ... 33
4.3 PLAYBACK OF MIDI ... 33
 4.3.1 Support of Mobile DLS ... 33
 4.3.2 Programmatic Control of the MIDI Player ... 34
4.4 3D AUDIO ... 34
 4.4.1 3D Sources .. 35
 4.4.1.1 3D Groups .. 35
 4.4.1.2 When is a Player Rendered in 3D? ... 35
 4.4.2 3D Parameters .. 36
 4.4.2.1 Coordinate System .. 36
 4.4.2.2 Precision .. 36
 4.4.2.3 Interactivity .. 37
 4.4.3 Levels of 3D Sources ... 37
 4.4.4 3D Positioning Multi-Channel Players ... 37
 4.4.4.1 3D and MIDI Players .. 37
 4.4.5 Object Relationships ... 37
4.5 EFFECTS ... 38
 4.5.1 Effects Architecture .. 38
 4.5.2 Bass Boost ... 38
 4.5.3 Equalization ... 39
 4.5.4 Virtualization .. 39
 4.5.5 Reverberation .. 39
4.6 EXAMPLE USE CASES.. 40

4.6.1 Sampled Audio Playback .. 40

4.6.2 MIDI Playback .. 41

4.6.3 3D Audio ... 42

4.6.4 Recording Audio ... 43

4.6.5 Reading Metadata ... 44

4.7 MINIMUM REQUIREMENTS .. 44

4.7.1 Phone Profile.. 46

4.7.1.1 Use Case 1...46

4.7.1.2 Use Case 2...47

4.7.1.3 Use Case 3...48

4.7.2 Music Profile... 49

4.7.2.1 Use Case 1...49

4.7.3 Game Profile .. 50

4.7.3.1 Use Case 1...50

4.7.3.2 Use Case 2...51

4.7.3.3 Use Case 3...52

4.7.3.4 Use Case 4...53

4.7.3.5 Use Case 5...54

4.7.3.6 Use Case 6...55

4.7.3.7 Use Case 7...56

4.7.3.8 Use Case 8...57

4.7.4 Data Sources ... 58

PART 2: API REFERENCE... 59

5 BASE TYPES AND UNITS... 60

5.1 STANDARD UNITS ... 60

5.2 BASE TYPES .. 60
FUNCTIONS .. 62

6.1 SLCreateEngine Function ... 62

6.2 SLQueryNumSupportedEngineInterfaces Function ... 63

6.3 SLQuerySupportedEngineInterfaces Function ... 64

OBJECT DEFINITIONS .. 65

7.1 3D Group.. 66

7.2 Audio Player ... 68

7.3 Audio Recorder ... 73

7.4 Engine Object .. 75

7.5 LED Array I/O Device.. 77

7.6 Listener Object.. 78

7.7 Metadata Extractor Object... 80

7.8 MIDI Player Object... 81

7.9 Output Mix.. 86

7.10 Vibra I/O Device .. 89

INTERFACE DEFINITIONS .. 90

8.1 SL3DCommitItf .. 91

8.2 SL3DDopplerItf ... 94

8.3 SL3DGroupingItf ... 101

8.4 SL3DLocationItf .. 104

8.5 SL3DMacroscopicItf ... 118

8.6 SL3DSourceItf ... 127

8.7 SLAudioDecoderCapabilitiesItf .. 145

8.8 SLAudioEncoderItf .. 148

8.9 SLAudioEncoderCapabilitiesItf .. 150

8.10 SLAudioIODeviceCapabilitiesItf .. 153

8.11 SLBassBoostItf .. 171
8.12 SLBUFFERQUEUEITF .. 175
8.13 SLEDVICEVOLUMEITF .. 180
8.14 SLDYNAMICINTERFACEMANAGEMENTITF 184
8.15 SLDYNAMICSOURCEITF ... 191
8.16 SLEFFECTSENDITF ... 193
8.17 SLENGINEITF .. 199
8.18 SLENGINECAPABILITIESITF ... 222
8.19 SLENVIRONMENTALREVERBITF .. 232
8.20 SLEVELULATORITF ... 248
8.21 SLLLEDARRAYITF .. 259
8.22 SLMETADATAEXTRACTIONITF .. 265
8.23 SLMETADATATRAVERSALITF .. 278
8.24 SLMIDIMESSAGEITF .. 285
8.25 SLMIDIMUTEJOINT .. 292
8.26 SLMIDITEMPOITF ... 303
8.27 SLMIDITIMEITF ... 307
8.28 SLMUTEITF .. 312
8.29 SLOBJECTITF .. 318
8.30 SLOUTPUTMIXITF ... 331
8.31 SLPITCHITF ... 336
8.32 SLPLOYITF .. 340
8.33 SLPLOYBACKRATEITF .. 352
8.34 SLPREFETCHSTATUSITF .. 360
8.35 SLPRESETREVERBITF ... 367
8.36 SLRATEDITF ... 370
8.37 SLRECORDITF .. 374
8.38 SLSeekITF ... 384
8.39 SLThreadSyncITF ... 388
8.40 SLVibraITF .. 391
8.41 SLVirtualizerITF .. 397
8.42 SLVisualizationITf .. 403
8.43 SLVolumeITF .. 407

9 MACROS AND TYPEDEFS... 416

9.1 STRUCTURES ... 416

9.1.1 SLAudioCodecDescriptor .. 416
9.1.2 SLAudioEncoderSettings .. 418
9.1.3 SLAudioInputDescriptor ... 419
9.1.4 SLAudioOutputDescriptor ... 422
9.1.5 SLBufferQueueState .. 424
9.1.6 SLDataFormat_MIME ... 425
9.1.7 SLDataFormat_PCM ... 425
9.1.8 SLDataLocator_Address ... 426
9.1.9 SLDataLocator_IODevice .. 427
9.1.10 SLDataLocator_BufferQueue ... 427
9.1.11 SLDataLocator_MIDIBufferQueue .. 428
9.1.12 SLDataLocator_OutputMix ... 428
9.1.13 SLDataLocator_URI ... 428
9.1.14 SLDataSink .. 429
9.1.15 SLDataSource... 430
9.1.16 SLEngineOption ... 431
9.1.17 SLEnvironmentalReverbSettings ... 431
9.1.18 SLHSL ... 432
9.1.19 SLInterfaceID .. 432
9.1.20 SLLEDDescriptor ... 433
9.1.21 SLMetadataInfo ... 433
9.1.22 SLVec3D ... 434
9.1.23 SLVibraDescriptor ... 434
9.2 MACROS .. 435
9.2.1 SL_AUDIOCODEC ... 435
9.2.2 SL_AUDIOPROFILE and SL_AUDIOMODE 436
9.2.3 SLAPIENTRY ... 440
9.2.4 SL_BOOLEAN ... 440
9.2.5 SL_BYTEORDER ... 441
9.2.6 SL_CHARACTERENCODING ... 441
9.2.7 SL_CONTAINERTYPE ... 443
9.2.8 SL_DATAFORMAT .. 445
9.2.9 SL_DATALOCATOR ... 445
9.2.10 SL_DEFAULTDEVICEID .. 446
9.2.11 SL_DEVICECONNECTION .. 446
9.2.12 SL_DEVICELOCATION ... 447
9.2.13 SL_DEVICESCOPE ... 448
9.2.14 SL_DYNAMIC_ITF .. 449
9.2.15 SL_ENGINEOPTION .. 450
9.2.16 SL_EQUALIZER ... 450
9.2.17 SL_I3DL2 Environmental Reverb Presets 451
9.2.18 SL_IODEVICE ... 453
9.2.19 SL_METADATA_FILTER ... 453
9.2.20 SL_METADATA_TRAVERSALMODE 454
9.2.21 SL_MIDIMESSAGETYPE ... 454
9.2.22	SL_MILLIBEL .. 455
9.2.23	SL_MILLIHertz_MAX .. 455
9.2.24	SL_MILLIMETER_MAX .. 455
9.2.25	SL_NODE_PARENT .. 455
9.2.26	SL_NODETYPE .. 456
9.2.27	SL_OBJECT_EVENT ... 457
9.2.28	SL_OBJECT_STATE .. 458
9.2.29	SL_OBJECTID ... 458
9.2.30	SL_PCMSAMPLEFORMAT .. 459
9.2.31	SL_PLAYEVENT ... 459
9.2.32	SL_PLAYSTATE ... 460
9.2.33	SL_PREFETCHEVENT ... 460
9.2.34	SL_PREFETCHSTATUS .. 460
9.2.35	SL_PRIORITY .. 461
9.2.36	SL_PROFILES ... 461
9.2.37	SL_RATECONTROLMODE .. 462
9.2.38	SL_RATEPROP .. 462
9.2.39	SL_RECORDEVENT .. 463
9.2.40	SL_RECORDSTATE .. 463
9.2.41	SL_REVERBPRESET ... 464
9.2.42	SL_RESULT .. 464
9.2.43	SL_ROLLOFFMODEL ... 466
9.2.44	SL_SAMPLINGRATE ... 466
9.2.45	SL_SEEKM ode ... 467
9.2.46	SL_SPEAKER .. 468
9.2.47	SL_TIME .. 469
9.2.48	SL_VOICETYPE ... 469
PART 3: APPENDICES .. 470

APPENDIX A: REFERENCES ... 471

APPENDIX B: SAMPLE CODE .. 473

B.1 AUDIO PLAYBACK AND RECORDING .. 473
B.1.1 Buffer Queue .. 473
B.1.2 Recording .. 477

B.2 DYNAMIC INTERFACE MANAGEMENT ... 481

B.3 MIDI .. 485
B.3.1 Simple MIDI ... 485
B.3.2 MIDI Buffer Queue .. 486
B.3.3 Advanced MIDI: MIDI messaging .. 489

B.4 METADATA EXTRACTION .. 493
B.4.1 Simple Metadata Extraction ... 493

B.5 3D AUDIO .. 495
B.5.1 Simple 3D.. 495
B.5.2 Advanced 3D.. 498

B.6 EFFECTS .. 506
B.6.1 Environmental Reverb .. 506
B.6.2 Equalizer ... 513

B.7 IO DEVICES AND CAPABILITIES .. 519
B.7.1 Engine capabilities ... 519

APPENDIX C: USE CASE SAMPLE CODE .. 523

C.1 INTRODUCTION .. 523
C.2 MUSIC PROFILE ... 523
C.2.1 Object Relationships .. 523
C.2.2 Example Code .. 524

C.3 PHONE PROFILE ... 533
C.3.1 Object Relationships ... 533
C.3.2 Example Code ... 534
C.4 Game Profile ... 541
C.4.1 Object Relationships... 541
C.4.2 Example Code ... 542
APPENDIX D: OBJECT-INTERFACE MAPPING... 552
PART 1: USER MANUAL
1 Overview

1.1 Purpose of this Document

This document specifies the Application Programming Interface (API) for OpenSL ES™ 1.0. Developed as an open standard by the Khronos Group, OpenSL ES is a native language application-level audio API for embedded mobile multimedia devices. It provides a device-independent cross-platform interface for applications to access a device’s audio capabilities.

1.1.1 About the Khronos Group

The Khronos Group is a member-funded industry consortium focused on the creation of open standard, royalty-free APIs to enable the authoring and accelerated playback of dynamic media on a wide variety of platforms and devices. All Khronos members can contribute to the development of Khronos API specifications, are empowered to vote at various stages before public deployment, and may accelerate the delivery of their multimedia platforms and applications through early access to specification drafts and conformance tests. The Khronos Group is responsible for open APIs such as OpenGL® ES, OpenKODE™, OpenMAX™ and OpenVG™.

1.2 Scope

OpenSL ES is an application-level C-language audio API designed for resource-constrained devices. Particular emphasis has been made to ensure that the API is suitable for mobile embedded devices, including basic mobile phones, smart “feature” phones, PDAs and mobile digital music players. The API is suitable for both lower-end devices and feature-rich, higher-end devices.

OpenSL ES’s API design devotes particular attention to application-developer friendliness. Its status as an open cross-platform API enables developers to port the same source across multiple devices with minimal effort. Thus, OpenSL ES provides a stable base for application development.

This document specifies the OpenSL ES API. It does not define or suggest how to implement the API.

1.3 Intended Audience

This specification is meant for application-developers and implementers. The document is split into two sections: a user guide and an API reference. Application-developers can use this document as a user guide to learn about how to use OpenSL ES and they can refer to the API reference when developing their applications. Implementers of the API can use this specification to determine what constitutes an implementation conforming to the OpenSL ES standard.
1.4 A Brief History of OpenSL ES

OpenSL ES was originally conceived with the aim to reduce the amount fragmentation that exists for audio applications on mobile devices. Prior to the release of OpenSL ES there were many, mostly proprietary, audio APIs. Any developer wanting to deliver their audio application on many devices would have to spend most of their time porting their application. Even when an audio API was supported on multiple devices, there was little guarantee of what level of functionality could be relied on between the devices. It was clear that as more advanced audio functionality would start to become commonplace on mobile devices the fragmentation would only worsen.

This situation inspired companies with a wide range of backgrounds – such as mobile phone handset manufacturers, PC audio hardware manufacturers, MIDI vendors, audio silicon vendors and audio software vendors - to create OpenSL ES. An open standard, C-language audio API for mobile embedded devices, OpenSL ES provides a guarantee of what functionality will be supported in all implementations of the API.

1.5 Relationship to OpenMAX AL 1.0

OpenSL ES is an application-level enhanced audio API, also designed for mobile embedded devices. OpenMAX AL 1.0 [OMXAL], also from the Khronos Group, is an application-level multimedia playback and recording API for mobile embedded devices. As such, both APIs do overlap in certain basic audio functionality (such as audio playback, audio recording and basic MIDI). The Venn diagram in Figure 1 illustrates the functional overlap in the two APIs.
As the Venn diagram shows, OpenSL ES has advanced audio features like effects (reverberation, stereo widening, bass boost, etc.) and positional 3D audio that are not part of OpenMAX AL 1.0. Similarly, OpenMAX AL 1.0 has audio features like analog radio tuner and RDS that are not part of OpenSL ES.

The primary focus of OpenSL ES is advanced audio and MIDI functionality for mobile devices. The primary focus of OpenMAX AL 1.0 is media (audio, video, and image) capture and rendering. Further, both OpenSL ES and OpenMAX AL 1.0 are partitioned into profiles based on market segments:

- OpenSL ES 1.0 has three overlapping profiles: Phone, Music and Game.
- OpenMAX AL 1.0 has two overlapping profiles: Media Player and Media Player/Recorder.

Each of these profiles has well-defined feature sets and conformance requirements. For example, to be compliant with the OpenMAX AL 1.0 Media Player profile, an OpenMAX AL 1.0 implementation must provide audio, image and video playback functionality. An audio-only OpenMAX AL 1.0 implementation would not be compliant with either profile of the OpenMAX AL 1.0 specification.

This segmentation into profiles ensures that there will be no confusion whatsoever regarding which API is suitable for a particular set of use cases.

- Example 1: an audio-only application will have no need for video and image functionality and therefore would likely pick one of the OpenSL ES profiles, depending on the use cases of interest.
- Example 2: a media playback and recording application would use the OpenMAX AL 1.0 Media Player/Recorder profile.
- Example 3: An advanced multimedia/game application that needs audio/video/image playback and recording as well as advanced audio features like 3D audio and effects would use both the Media Player/Recorder profile of OpenMAX AL 1.0 and the Game profile of OpenSL ES 1.0.

The two APIs have been designed such that their architecture is identical. Further, each API has identical API methods for the same functionality. At the same time, the APIs are also independent – each can be used as a standalone API by itself (as in Examples 1 and 2) or can co-exist with the other on the same device (as in Example 3).
1.6 Conventions Used

When this specification discusses requirements and features of the OpenSL ES API, specific words are used to indicate the requirement of a feature in an implementation. The table below shows a list of these words.

Table 1: Requirement Terminology

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>The stated functionality is an optional requirement for an implementation of the OpenSL ES API. Optional features are not required by the specification but may have conformance requirements if they are implemented. This is an optional feature as in “The implementation may have vendor-specific extensions.”</td>
</tr>
<tr>
<td>Shall</td>
<td>The stated functionality is a requirement for an implementation of the OpenSL ES API. If an implementation fails to meet a shall statement, it is not considered as conforming to this specification. Shall is always used as a requirement, as in “The implementation shall support the play interface.”</td>
</tr>
<tr>
<td>Should</td>
<td>The stated functionality is not a requirement for an implementation of the OpenSL ES API but is recommended or is a good practice. Should is usually used as follows: “An OpenSL ES implementation of the game profile should be capable of playing content encoded with an MP3 codec.” While this is a recommended practice, an implementation could still be considered as conforming to the OpenSL ES API without implementing this functionality.</td>
</tr>
<tr>
<td>Will</td>
<td>The stated functionality is not a requirement for an implementation of the OpenSL ES API. Will is typically used when referring to a third party, as in “the application framework will correctly handle errors.”</td>
</tr>
</tbody>
</table>

1.6.1 Parameter Range Notation

Valid parameter ranges are specified using both enumerated lists of valid values and sequential ranges. The ranges are specified using the following interval notation [ISO31-11]: (a, b) for open intervals, [a, b] for closed intervals, and (a, b] and [a, b) for half-closed intervals, defined as follows:

\[
(a, b) = \{x \mid a < x < b\} \\
[a, b] = \{x \mid a \leq x \leq b\} \\
(a, b] = \{x \mid a < x \leq b\} \\
[a, b) = \{x \mid a \leq x < b\}
\]
1.6.2 Format and Typographic Conventions

This document uses the following conventions:

Table 2: Format and Typographic Conventions

<table>
<thead>
<tr>
<th>Format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier font</td>
<td>Sample code, API parameter specifications</td>
</tr>
</tbody>
</table>

1.7 Definition of Terms

The following terms in are used in this specification:

Table 3: Specification Terminology

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D source</td>
<td>A player or group of players positioned in 3D space.</td>
</tr>
<tr>
<td>Application</td>
<td>A software program that makes calls to the OpenSL ES API. An application is the client of the API.</td>
</tr>
<tr>
<td>Implementation</td>
<td>A realization of the OpenSL ES specification. One example is a software library that conforms to the OpenSL ES specification.</td>
</tr>
<tr>
<td>Platform</td>
<td>A software and hardware architecture that supports running applications.</td>
</tr>
</tbody>
</table>

1.8 Acknowledgements

The OpenSL ES specification is the result of the contributions of many people. The following is a partial list of contributors, including the respective companies represented at the time of their contribution:

Stewart Chao, AMD (now with Qualcomm)
Tom Longo, AMD (now with Qualcomm)
Wilson Kwan, AMD (now with Qualcomm)
Chris Grigg, Beatnik
Andrew Ezekiel Rostaing, Beatnik
Roger Nixon, Broadcom
Tim Granger, Broadcom
Wolfgang Schildbach, Coding Technologies
Peter Clare, Creative
Jean-Michel Trivi, Creative
Robert Alm, Ericsson
Lewis Balfour, Ericsson
Harald Gustafsson, Ericsson
Håkan Gårdrup, Ericsson
Erik Noreke, Ericsson (Chair)
Jacob Ström, Ericsson
Pierre Bossart, Freescale
Brian Murray, Freescale
Jarmo Hiipakka, Nokia
Yeshwant Muthusamy, Nokia
Matti Paavola, Nokia
Scott Peterson, NVIDIA
Neil Trevett, NVIDIA
Jim Van Welzen, NVIDIA
Gregor Brandt, QSound
Brian Schmidt, QSound
John Mortimer, QSound
Mark Williams, QSound
Scott Willing, QSound
Ytai Ben-Tsvi, Samsung (Past Editor)
Natan Linder, Samsung
Gal Sivan, Samsung
Weijun Wang, SKY MobileMedia
Tim Jones, Sonaptic
Jonathan Page, Sonaptic
Stephan Tassart, ST Microelectronics
Tim Renouf, Tao Group
Brian Evans, Symbian
Pavan Kumar, Symbian
James Ingram, Symbian
Rajeev Ragunathan, Symbian
Leo Estevez, Texas Instruments
Danny Jochelson, Texas Instruments
Nathan Charles, ZiiLABS (Past Chair)
2 Features and Profiles

OpenSL ES was designed with audio application developers in mind. It provides support for a number of audio features that facilitate the development of a wide range of applications on the target devices. Supported features include:

- **Playback of audio and MIDI**: Includes playback of PCM and encoded content, MIDI ringtones and UI sounds, as well as extraction of metadata embedded in the content.
- **Effects and controls**: Includes general audio controls such as volume, rate, and pitch, music player effects such as equalizer, bass boost, preset reverberation and stereo widening, as well as advanced 3D effects such as Doppler, environmental reverberation, and virtualization.
- **Advanced MIDI**: Includes support for SP-MIDI, mobile DLS, mobile XMF, MIDI messages, and the ability to use the output of the MIDI engine as a 3D sound source.
- **3D Audio**: Includes 3D positional audio and 3D groups (grouping of 3D sound sources). 3D audio functionality facilitates the use of OpenSL ES as the audio companion to OpenGL ES (a 2D/3D graphics API from Khronos) for gaming.

OpenSL ES also provides optional support for LED and vibra control, 3D macroscopic control, and audio recording. Audio recording - in PCM as well as non-PCM formats – can be from a microphone, a line-in jack or another software component. Section 2.4 discusses optional features in the API.

These audio features enable the development of applications such as music players, ringtone players, voice recorders, simple 2D games as well as advanced 3D games, and MIDI sequencers, to name a few.

2.1 Motivation

The need for segmenting the set of OpenSL ES features into profiles arose from the following considerations:

- The realization that the set of OpenSL ES features was quite large.
- The fact that OpenSL ES would most likely be used for a range of devices catering to quite different market segments. Therefore, not all implementations of OpenSL ES would need (or could accommodate) all of the functionality represented by this large set of features.

Segmentation of the API into profiles based on market segments is considered a better approach than one based solely on technical criteria.
2.2 Profile Definition

An OpenSL ES profile is a defined subset of features that satisfy typical use cases for a given market segment. Any feature may be included in any profile, and any device may support any number of profiles.

2.3 Profiles

OpenSL ES is segmented into three profiles: Phone, Music and Game. A short description and rationale of each of the profiles is discussed below:

- **Phone**: This is the basic profile that is designed for the low-end or “basic” mobile phone market segment. This includes ringtone and alert tone playback (that is, basic MIDI functionality), basic audio playback, and simple 2D audio games. Recording functionality, which is commonly used for recording voice memos on mobile phones, is an optional feature and is not part of any profile. Optional features and their relationship to profiles are described in more detail in section 2.4, below.

- **Music**: This profile is designed for the music-centric mobile device market. Characteristics of such devices include high-quality audio, the ability to support multiple music audio codecs, and the ability to play music from local files. Some high-end devices could also support streaming audio from remote servers (although this is not mandated functionality in OpenSL ES). A mobile phone that has a built-in music player would incorporate both the Phone and Music profiles. A digital music-only mobile device would use only the Music profile.

- **Game**: This profile is designed for the game-centric mobile device market. Characteristics of such devices include advanced MIDI functionality, and sophisticated audio capabilities such as 3D audio, audio effects, and the ability to handle buffers of audio. A mobile phone that offers sophisticated game-playing ability would incorporate both the Phone and Game profiles. A game-only device would use only the Game profile.

Other combinations of these three profiles are also possible; a full-featured game-and-music mobile phone would incorporate all three profiles: Phone, Music and Game, and a PDA handheld with only wireless network capability but no mobile phone functionality might incorporate only the Music and Game profiles.

It is worth noting here that these three profiles are by no means distinct (and thus should not be confused with levels); they do indeed overlap – mostly in basic audio API functionality, but also in areas that reflect the increasing sophistication in even the “basic” mobile phones that are likely to be in the marketplace in the near future. Conversely, none of the profiles is a superset of one of the other two profiles.

The following table lists the features in the three profiles of OpenSL ES. A “Y” in a cell indicates that the listed API feature is mandatory in that profile, while a blank cell indicates the absence of that feature.
Table 4: Features of the Three OpenSL ES Profiles

<table>
<thead>
<tr>
<th>API (Profile) Feature</th>
<th>Phone</th>
<th>Music</th>
<th>Game</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAYBACK AND PROCESSING CONTROLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Play multiple sounds at a given time</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Playback of mono and stereo sounds</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Basic playback controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>End to end looping</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Segment looping</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Query and set the playback position</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Position-related callbacks and notifications</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sound prioritization</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Route audio to multiple simultaneous outputs</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume control</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Audio balance and pan control</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Metadata retrieval</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Modify playback pitch and rate</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Playback of sounds in secondary storage</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Buffers & buffer queues</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>CAPABILITY QUERIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query capabilities of the implementation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Enumerate audio I/O devices</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Query audio I/O device capabilities</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>EFFECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereo widening</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Virtualization</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Reverberation</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Equalization</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Effect send control</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>MIDI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for: SP-MIDI, Mobile DLS, Mobile XMF</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
2.4 Optionality Rules of Features and Profiles

To minimize confusion among developers and reduce fragmentation, the API adheres to the following rules on features and profiles:

1. All features within a profile are mandatory – this is critical in assuring developers and implementers that if they pick a profile, all the functionality representative of that profile will indeed be present. Then, applications written to specific profile(s) will indeed be portable across OpenSL ES implementations of those profile(s).

2. A feature that does not fit in any of the profiles is considered optional and part of a separate standardized “extension” of OpenSL ES. It is also best not to categorize features in this extension in any way, to avoid a potentially confusing combinatorial explosion (“Profile X with Extension Categories 1 and 2”, or “Profile X with Extension Categories 2 and 3,” and so on) and effectively negating the benefits of Rule #1. Vendors are free to pick and choose from this extension to augment their implementations of any of the profiles.

3. Vendors are free to implement features from more than one profile, but they can claim compliance with a profile only if they implement all of the features of that profile. Example: if a vendor implements the Phone profile in its entirety but just three of the features in the Music profile, then that vendor can claim compliance only with the Phone profile.
The following table lists some of the optional features in OpenSL ES 1.0 with the reason for their optionality.

Table 5: Optional Features in OpenSL ES

<table>
<thead>
<tr>
<th>Optional Feature</th>
<th>Reason for Optionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio recording from a microphone or on-device, line-in jack</td>
<td>Implies hardware dependency (presence of a microphone or line-in jack)</td>
</tr>
<tr>
<td>Audio recording from another software component</td>
<td>Not all implementations have this ability</td>
</tr>
<tr>
<td>Record audio to a non-PCM format</td>
<td>Same reasons as outlined above in the first two rows of this table</td>
</tr>
<tr>
<td>Haptics – support non-audio output devices such as LEDs and vibrator(s)</td>
<td>Implies hardware dependency (presence of LEDs and vibrators)</td>
</tr>
<tr>
<td>Support for Timed Text – ability to access timed text stored in a media asset</td>
<td>No clear fit in any of the three profiles</td>
</tr>
<tr>
<td>Macroscopic behavior in 3D audio</td>
<td>Cutting edge feature for mobile devices that will be supported by advanced implementations</td>
</tr>
</tbody>
</table>

2.5 Profile Notes

Profiles notes are used within this specification to identify objects and interfaces where support is optional in one or more of the profiles. Profile notes are not used where an object or interface is mandated in all three profiles. Here are some representative examples of profile notes found in the specification:

- **PROFILE NOTES**

 This object is a standardized extension and consequently optional in all profiles.

- **PROFILE NOTES**

 This interface is mandated only in the Music and Game profiles.
2.6 Behavior for Unsupported Features

If an application attempts to use a feature that is not present in a specific implementation of OpenSL ES, the implementation shall fail the request to use the feature, returning the \texttt{SL_RESULT_FEATURE_UNSUPPORTED} error code [see section 3.4 on Error Reporting]. This can happen either when calling \texttt{GetInterface()} on an unsupported interface or when attempting to call a method not supported in an interface. Further, if an interface with an unknown ID is used (either during object creation or in a \texttt{GetInterface()} call), this same result code shall be returned. This facilitates portability of applications using non-standard extensions.
3 Design Overview

3.1 Object Model

3.1.1 Objects and Interfaces

The OpenSL ES API adopts an object-oriented approach using the C programming language. The API includes two fundamental concepts on which are built all other constructs: an object and an interface.

An **object** is an abstraction of a set of resources, assigned for a well-defined set of tasks, and the state of these resources. An object has a type determined on its creation. The object type determines the set of tasks that the object can perform. This can be considered similar to a class in C++.

An **interface** is an abstraction of a set of related features that a certain object provides. An interface includes a set of **methods**, which are functions of the interface. An interface also has a type which determines the exact set of methods of the interface. We can define the interface itself as a combination of its type and the object to which it is related.

An **interface ID** identifies an interface type. This identifier is used within the source code to refer to the interface type.

Objects and interfaces are tightly related – an object **exposes** one or more interfaces, all of which have different interface types, that is, an object may contain at most one interface of each interface type. A given interface instance is **exposed** by exactly one object. The application controls the object's state and performs the object operations exclusively through the interfaces it exposes. Thus, the object itself is a completely abstract notion, and has no actual representation in code, yet it is very important to understand that behind every interface stands an object.

The relationship between object types and interface types is as follows. The object type determines the types of interfaces that may be exposed by objects of this type. Each object type definition in this document includes a detailed list of the interfaces on that object.

PROFILE NOTES

The set of interface types allowed for a given object type may vary across profiles. This will be explicitly stated in this document, per object, and per interface type.

An object’s **lifetime** is the time between the object’s **creation** and its **destruction**. The application explicitly performs both object creation and destruction, as will be explained later in this document.

An object maintains a state machine with the following states:

- **Unrealized (initial state):** The object is alive but has not allocated resources. It is not yet usable; its interfaces’ methods cannot yet be called.
- **Realized:** The object’s resources are allocated and the object is usable.
- **Suspended (optional state):** The object has fewer resources than it requires in order to be usable but it maintains the state it was in at the moment of suspension. This state is optional to the extent that, in the face of resource loss, the implementation has the option of putting an object either in the Suspended state or the Unrealized state.

The following state diagram illustrates the states and transitions.

![Object state diagram](image)

Figure 2: Object state diagram

When the application destroys an object, that object implicitly transitions through the Unrealized state. Thus it frees its resources and makes them available to other objects.

See section 3.1.7 for more details on resource allocation.

The following example demonstrates the transition between object states:

```c
SLresult  res;
SLAudioPlayer  player;
SLPlayItf  playbackItf;
SLint32  priority;
SLboolean  preemptable;
SLUint32  state;
SLmillibel  vol;

/* create an audio player */
res = (*eng)->CreateAudioPlayer(eng, ..., &player);
CheckErr(res);
/* Realizing the object in synchronous mode. */
res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
...```

/* Checking the object’s state since we would like to use it now, and its resources may have been stolen. */
res = (*player)->GetState(player, &state);
if (SL_OBJECT_STATE_SUSPENDED == state)
{
   /* Resuming state synchronously. */
   res = (*player)->Resume(player, SL_BOOLEAN_FALSE);
   while (SL_RESULT_RESOURCE_ERROR == res)
   {
      /* Not enough resources. Increasing object priority. */
      res = (*player)->GetPriority(player, &priority, &preemptable);
      res = (*player)->SetPriority(player, INT_MAX, SL_BOOLEAN_FALSE);
      /* trying again */
      res = (*player)->Resume(player, SL_BOOLEAN_FALSE);
   }
}
else
{
   if (SL_OBJECT_STATE_UNREALIZED == res)
   {
      /* Realizing state synchronously. */
      res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
      while (SL_RESULT_RESOURCE_ERROR == res)
      {
         /* Not enough resources. Increasing object priority. */
         res = (*player)->GetPriority(player, &priority, &preemptable);
         res = (*player)->SetPriority(player, INT_MAX, SL_BOOLEAN_FALSE);
         /* trying again */
         res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
      }
   }
}

3.1.2 Getters and Setters

Getters and setters provide access to object properties. An application uses a setter to change the value of an object’s property and a getter to retrieve a value of an object’s property.

Unless explicitly specified in a getter’s method name, a getter shall always return the exact value that was set by a previous call to a setter, even if that value had been rounded off internally by the implementation. An exception to this rule is that a Boolean getter must return only logically (but not necessarily numerically) the same value as was set.
Here is a short example that demonstrates the use of a getter and a setter:

```c
SLresult res;
SLVolumeItf volumeItf;
SLmillibel vol;

res = (*volumeItf)->GetVolumeLevel(volumeItf, &vol); CheckErr(res);
res = (*volumeItf)->SetVolumeLevel(volumeItf, vol + 7); CheckErr(res);
```

Unless specified otherwise, applications are responsible for allocation and deallocation of memory buffers used in the interface methods.

### 3.1.3 Representation in Code

As stated in the previous section, objects have no representation in code. OpenSL ES refers to an object via its `SLObjectItf` interface [see sections 3.1.4 and 8.29].

The API represents interfaces as C-structs, where all the fields are method-pointers, representing the methods. These interface structures are always stored and passed as pointer-to-pointer-to-struct and never by value (this level of indirection enables more efficient API implementations).

Each of the interface methods has a first argument, called `self`, whose type is the interface type. Thus when calling an interface method, the caller must pass the interface pointer in this argument. Additionally, each of the callback prototypes has a first argument called `caller`, whose type is the interface type. Here is an example of a simple interface:

```c
struct SLSomeInterfaceItf_;
typedef const struct SLSomeInterfaceItf_ * const * SLSomeInterfaceItf;

struct SLSomeInterfaceItf_ {
 SLresult (*Method1) (
 SLSomeInterfaceItf self,
 SLint32 prm
);
 SLresult (*Method2) (
 SLSomeInterfaceItf self
);
};
```

This interface is called `SLSomeInterfaceItf` and has two methods: `Method1()` and `Method2()`. Such an interface will be used as follows:

```c
SLuint32 i;
SLresult res;
SLSomeInterfaceItf someItf;

/* ... obtain this interface somehow ... */
res = (*someItf)->Method1(someItf, 13);
res = (*someItf)->Method2(someItf);
```

Note that this code excludes the mechanism for obtaining the interface itself, which will be explained in the following sections.
3.1.4 The SLObjectItf Interface

SLObjectItf is a special interface type fundamental to the architecture. Every object type in the API exposes this interface. It is the “entry-point” for an object since every method that creates a new object actually returns the SLObjectItf of this object. Using this interface, an application may perform all the basic operations on the object and may access other interfaces exposed by the object.

The application destroys the object by calling the Destroy() method of the SLObjectItf interface.

The application obtains other interfaces of the object by calling the GetInterface() method of the SLObjectItf interface. The application retrieves an interface by its type ID which uniquely identifies it; an object cannot contain more than one interface of a certain type.

The application controls the state of the object by calling the Realize() and Resume() methods of the SLObjectItf interface.

For a complete and detailed specification of this interface type, see section 8.29.

3.1.5 The Engine Object and SLEngineItf Interface

Other fundamental entities in the architecture are the engine object and the SLEngineItf interface. These entities serve as the API's entry-point. The application begins an OpenSL ES session by creating an engine object.

The engine object is created using the global function slCreateEngine() [see section 6.1]. The result of engine object creation is a SLObjectItf interface, regardless of the implementation.

After creating the engine object, the application can obtain this object's SLEngineItf interface. This interface contains creation methods for all the other object types in the API.

To create an object process:

- Create and realize an engine object if one has not been created already.
- Obtain the SLEngineItf interface from this object.
- Call the appropriate object creation method of this interface.
- If the call succeeds, the method will return an SLObjectItf interface of the new object.
- After working with the object, call the Destroy() method of the SLObjectItf to free the object and its resources.

For a complete and detailed specification of the engine object and the SLEngineItf interface type, please refer to sections 7.4 and 8.17 respectively.
3.1.6 The Relationship Between Objects and Interfaces

The set of interfaces exposed by an object is determined by three factors:

- The object’s type
- The interfaces requested by the application during the object’s creation
- The interfaces added and removed by the application during the object’s lifetime

An object’s type determines the set of interfaces that will always exist, regardless of whether the application requests them or not. These interfaces are called *implicit interfaces* and every object type has its own set of implicit interfaces that will exist on every object of this type. The `SLObjectItf` interface, introduced in section 3.1.4, is fundamentally required on every object, so it is designated as implicit on all object types, that is, the application never needs to explicitly request that it be exposed on any object.

Every object type also defines a set of interfaces that are available on objects of this type, but will not be exposed by an object unless explicitly requested by the application during the object’s creation. These explicitly requested interfaces are called *explicit interfaces*.

Finally, every object type also defines a set of interfaces that may be added and removed by the application during the object’s lifetime. These types of interfaces are called *dynamic interfaces* and they are managed by a dedicated interface, called `SLDynamicInterfaceManagementItf` [see section 8.14], which enables this dynamic binding. Attempts to dynamically add or remove implicit interfaces on an object will fail.

The set of explicit and dynamic interfaces for a given object type may vary between implementations [see section 3.5]. However, for a given profile, each object type has a set of mandated explicit interfaces and a set of mandated dynamic interfaces that shall be supported by every implementation.

When an application requests explicit interfaces during object creation, it can flag any interface as required. If an implementation is unable to satisfy the request for an interface that is not flagged as required (i.e. it is not required), this will not cause the object to fail creation. On the other hand, if the interface is flagged as required and the implementation is unable to satisfy the request for the interface, the object will not be created.

The following table summarizes whether an object is created and an interface is exposed, according to how the specification relates their types and how the application designates the interface at the object’s creation:

---

1 The reader is advised that there are known on-screen rendering issues with the following tables at certain screen resolutions and it may be necessary to increase the zoom level to fully view the table cell borders.
### Table 6: Interface Exposure Rules During Object Creation

<table>
<thead>
<tr>
<th>Interface requested by application</th>
<th>Interface marked as required</th>
<th>Interface not marked as required</th>
<th>Interface not requested by application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Explicit</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Available</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Not available</td>
<td>❄</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

**Key:**
- ✓ Object is created and interface is exposed, subject to resource constraints
- ✗ Object is created but interface is not exposed
- ❄ Object is not created and interface is not exposed

The next table summarizes whether interface is exposed on an object when the application requests to add the interface dynamically, according to whether the specification mandates support for the interface on the object type and whether this support is mandated dynamically or not.

### Table 7: Interface Exposure Rules for Dynamic Adding of Interface

<table>
<thead>
<tr>
<th>Application dynamically adds interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determined by application</td>
</tr>
<tr>
<td>Mandated interface</td>
</tr>
<tr>
<td>Optional interface</td>
</tr>
<tr>
<td>Not available</td>
</tr>
</tbody>
</table>

**Key:**
- ✓ Interface is exposed, subject to resource constraints
- ✗ Interface is not exposed
- ❄ Interface may be exposed (implementation dependent), subject to resource constraints
3.1.7 The SLDynamicInterfaceManagementItf Interface

The SLDynamicInterfaceManagementItf interface provides methods for handling interface exposure on an object after the creation and realization of the object. The SLDynamicInterfaceManagementItf itself is an implicit interface on all object types.

The dynamic nature of an interface is unrelated to it being optional or mandated for an object. An interface that is “mandated” as dynamic can actually be realized both at object creation time as well as dynamically, at any point in the object’s lifetime (using the SLDynamicInterfaceManagementItf). Interfaces that represent a significant resource drain if realized on object creation but that are never used, are prime candidates for dynamic interfaces. By making them dynamic, the application developer can use them only when needed, often resulting in significant resource optimization. Dynamic interfaces are explicitly called out in the “Mandated Interfaces” sections of the corresponding objects in Section 7.

Although this interface provides a method for requesting the acquisition of an additional interface, namely AddInterface(), the implementation may deny the request. The criteria for denial are implementation-dependent. For example, the state of an object’s player or recorder may influence the success or failure of dynamic interface addition. Upon a successful AddInterface() call for a specified interface, that interface is immediately usable. There is no separate call to “realize” the given interface. The interface instance is obtained, just as for static interfaces, by using the GetInterface() method.

An application may retire a dynamic interface with a RemoveInterface() call. After a RemoveInterface() call, the dynamic interface is no longer usable. When an object is unrealized, all interfaces, including the dynamic interfaces, are unusable and effectively removed from the object.

3.1.8 Resource Allocation

The exact amount of resources available on an OpenSL ES implementation may vary across different implementations and over the lifetime of an engine object. As a result, an application using the OpenSL ES API must always be prepared to handle cases of failure in object realization or dynamic interface addition. In addition, an object’s resources may be stolen by another entity (such as another object, or the underlying system) without prior notice.

To allow applications to influence the resource allocation by the system, a priority mechanism is introduced. Priority values are set on a per-object basis. Applications can use these object priorities to influence the behavior of the system when resource conflicts arise. For example, when a high-priority object needs a certain resource and the resource is currently assigned to a lower-priority object, the resource will most likely be “stolen” from the low-priority object (by the system) and re-assigned to the high-priority object. An application can change the priority of an object at any point during the lifetime of the object. It is also worth noting that these object priorities set by the application are confined to this instance of the API engine. They are unrelated to the priorities that may be
assigned by the system to the application itself and other components running on the system, for the purposes of resource management.

When a resource is stolen from an object, this object will automatically transition to either the Suspended state or the Unrealized state, depending on whether its interface states are preserved or reset, respectively. To which of the states the object transitions is determined solely by the implementation. When in either of these two states, all of this object’s interfaces, except for the SLObjectItf interface and the SLDynamicInterfaceManagementItf interface, become unusable, and return an appropriate error code. Dynamic interfaces are treated the same as any other interfaces. If the object the dynamic interface is exposed on is suspended or unrealized, the dynamic interfaces will be suspended or unrealized, respectively.

The application may request to be notified of such a transition. This is done by registering for a notification on the object. The application may also request to be notified when resources become available again, which may allow for the object to regain usability. The notification will include any dynamic interfaces as well, that is, the notification is sent when all the interfaces and the object can have their resources. Individual notification is NOT sent for each dynamic interface.

The application may attempt to recover an Unrealized or Suspended object by calling its Realize() or Resume() methods, respectively. If the call succeeds, the object will return to the Realized state, and its interface states will be either recovered or reset to default, depending on whether it was unrealized or suspended. The RemoveInterface() method is special and can be used in any object state to retire dynamically exposed interfaces. This may help in successfully realizing or resuming the object.

When a stolen resource is freed, the implementation checks whether this resource can be used in order to recover an interface in a resources stolen state. The check is made in object priority order, from high to low. It is not guaranteed, however, that attempting to recover an object after getting this notification will succeed.

An important difference regarding interfaces that are exposed dynamically is how resources are managed. When a dynamic interface loses its resources, a notification is sent but the object state is not affected. Also, other interfaces on the same object are not affected. The application may register for notification of dynamic interface resource changes.

After a lost resources notification, the dynamically exposed interface will become unusable. Two different types of lost resources notification can be received– resource lost, and resource lost permanently. The first type of notification indicates that the dynamic interface may be resumed by the application after a resource available notification has been received. When the ResumeInterface() call succeeds, the dynamic interface will be fully recovered. The second type of notification means that the current instance of the exposed dynamic interface can not recover from the resource loss and shall be retired by the application.
3.2 Threading Model

3.2.1 Mode of Operation

The OpenSL ES API is generally synchronous. This means that an API method will return only after its operation is complete, and any state changes caused by the method call will be immediately reflected by subsequent calls.

However, in some specific cases, a synchronous operation is not desirable, due to operations that may take a long time. In such cases, the actual termination of the operation will be signaled by a notification. Any state changes caused by the call are undefined between the time of the call and until the time of notification.

Asynchronous functions will be clearly designated as such in their documentation. Otherwise, a synchronous mode of operation should be assumed.

3.2.2 Thread Safety

The OpenSL ES API may operate in one of two modes, which determine the behavior of the entire API regarding reentrancy:

- **Thread-safe mode:** The application may call the API functions from several contexts concurrently. The entire API will be thread-safe – that is, any combination of the API functions may be invoked concurrently (including invocation of the same method more than once concurrently) by multiple application threads, and are guaranteed to behave as specified.

- **Non-thread-safe mode:** The application needs to take care of synchronization and ensure that at any given time a maximum of one API method is being called. The entire API is not thread-safe – that is, the application needs to ensure that at any given time a maximum of one of the API functions is being executed, or else undefined behavior should be expected.

An implementation shall support one or more of these modes.

The mode of operation is determined on engine creation, and cannot be changed during the lifetime of the engine object. An implementation shall support at least one of these modes, and should document which modes are supported.

Note that a application written to work with non-thread-safe mode will be able to work with a thread-safe mode engine without change. As a result, a valid implementation of thread-safe mode is automatically considered a valid implementation of the non-thread-safe mode; however, implementations of both modes may choose to implement them differently. Implementers should note that implementation of thread-safe mode assumes knowledge of the threading mechanisms used by the application.
3.3  Notifications

In several cases, the application needs to be notified when some event occurred inside the OpenSL ES implementation, such as when playback of a file has ended, or when an asynchronous method has completed. These notifications are implemented as callback functions – the application registers a method whose signature is specified by the API, and this method will be called by the OpenSL ES implementation every time a certain event occurs.

Callback functions are registered per-interface and per-event type, thus registering a callback for a certain event on a given object (through one of its interfaces) will not cause this callback to be called if the same event occurs on a different object, or if a different event occurs on the same object. The event type is simply designated by the method that was used to register the callback.

At any given time, a maximum of one callback function may be registered per-interface, per-event type. Registering a new callback on the same interface, using the same registration method, will un-register the old callback. Similarly, registering NULL is the way to un-register an existing callback without registering a new one.

The context from which the callbacks are invoked is undefined, and typically implementation- and OS-dependent. Thus the application cannot rely on any system call or OpenSL ES API call to work from within this call. However, to avoid a dead-end, each implementation should document the list of functions that can be safely called from the callback context. It is highly recommended that the implementation provide at least the means of posting messages to other application threads, where the event shall be handled. In addition, the SLThreadSyncItf interface [see section 8.39] must be usable from within the callback context.

The application should be aware of the fact that callbacks may be invoked concurrently with other callbacks, concurrently with application invocation of an API method, or even from within API calls, and thus should be prepared to handle the required synchronization, typically using the SLThreadSyncItf interface [see section 8.39].

For more specific details, refer to the engine object documentation [see section 7.4].

3.4  Error Reporting

Almost every API method indicates its success or failure by a result code (except for methods that are not allowed to fail under any circumstances). An API method’s documentation states the valid result codes for that method and an implementation shall return one of these result codes. For synchronous methods, the result code is the return value of the method. For asynchronous functions, the result code is contained in the data of the notification sent upon the completion of the operation.
Every API method has a set of pre-conditions associated with it, consisting of:

- Ranges for parameters
- API state in which the method should be called
- Context from which the method can be called

The pre-conditions are clearly documented for every method. When the application violates any of the pre-conditions, the method call will fail, and the method’s result code will indicate the violation. The API will remain stable and its state will not be affected by the call. However, it is recommended that applications do not rely on this behavior and avoid violating the pre-conditions. The main value of this behavior is to aid in the debug process of applications, and to guarantee stability in extreme conditions, and specifically under race-conditions.

However, the API’s behavior may be undefined (and even unstable) in any of the following conditions:

- Corruption of the `self` parameter, which is passed as every method’s first parameter, or any other parameter passed by pointer.
- Violation of the threading policy.

### 3.5 Extensibility

#### 3.5.1 Principles

The OpenSL ES API was designed with extensibility in mind. An extended API is defined as one that provides functionality additional to that defined by the specification, yet considered still conforming to the specification.

The main principles of the extensibility mechanism are:

- Any application written to work with the standard API will still work, unchanged, on the extended API.
- For an application that makes use of extensions, it will be possible and simple to identify cases where these extensions are not supported, and thus to degrade its functionality gracefully.

Possible extensions may include vendor-specific extensions as well as future versions of OpenSL ES.
### 3.5.2 Permitted Modifications to Physical Code

The OpenSL ES header files shall be edited only for the following purpose:

- To amend definitions of types (for example, 32 bit signed integers) such that they have correct representation.

Any vendor-specific extensions to the API shall reside in header files other than the OpenSL ES header files.

### 3.5.3 Extending Supported Interface Types

An extended API may introduce new interface types and expose these interfaces on either existing object types or on extended object types [see section 3.5.4].

An extended API may also expose standard interfaces on standard / extended object types that do not normally require exposing these interfaces.

The extended interfaces will be defined in a manner similar to standard interfaces. The extended interface types will have unique IDs, generated by the extension provider.

Note that the extended API may not alter standard interfaces or apply different semantics on standard interfaces, even if the syntax is preserved. An exception to this rule is extending the valid parameter range of functions, detailed later.

Functions may not be added to any of the interfaces defined in the specification. To do that, a new interface which includes the desired standard interface must be defined, along with a new interface ID which must be generated.

It is also highly recommended that whenever an interface’s signature changes (even slightly), a new interface ID will be generated, and the modified interface will be considered a new one. This is to protect application applications already written to work with the original interface.

### 3.5.4 Extending Supported Object Types

An extended API may introduce new object types to those specified in the standard API. The extended objects may expose either standard or extended interface types. Should it expose standard interfaces – they must still behave as specified. Otherwise, the extended API may provide extended interface types with different semantics.

The extended objects will be created by utilizing the `CreateExtensionObject()` function in the `SLEngineItf` on the engine object or extended interfaces with creation functions. These extended interfaces typically will be exposed by the standard engine object, but can also be exposed on other objects.
3.5.5 Extending Method Parameter Ranges

An extended API may support a greater range of parameters for a standard method than the range mandated by the specification. The semantics of the extended range are left to the extended API’s specification. However, for mandated ranges, the API shall behave exactly according to the specification.

Care must be taken when the extended API is vendor-specific in these cases – future versions of the API may use these extended values for different purposes. To help guard against collisions with future API versions, implementations of an extended API shall have the most significant bit set on any extensions to an enumeration (a fixed set of discrete unsigned values). For example:

```c
#define SL_SEEKMODE_FAST ((SLuint16) 0x0001)
#define SL_SEEKMODE_ACCURATE ((SLuint16) 0x0002)
/* ACME extension to SEEKMODE enumeration */
#define SL_SEEKMODE_ACME_FOO ((SLuint16) 0x8001)
```

The most significant bit does not need to be set for any extensions to continuous ranges or for signed values.

3.5.6 Result Codes

It is not possible to extend the result codes for any standardized method in the API. An implementation shall return one of the result codes listed in the method’s documentation.

3.5.7 Interface ID Allocation Scheme

A common interface ID allocation scheme shall be used for vendor-specific interface IDs, to prevent collisions by different vendors.

The UUID mechanism provided freely in the Web-site below is highly recommended to be used by all providers of extensions.

http://www.itu.int/ITU-T/asn1/uuid.html

The interface IDs do not have to be registered – it is assumed that the above mechanism will never generate the same ID twice.

3.5.8 Avoiding Naming Collisions

It is recommended that vendors providing extended APIs qualify all the global identifiers and macros they provide with some unique prefix, such as the vendor name. This prefix will come after the API prefix, such as SLAcmeDistortionItf.

This is meant to reduce the risk of collisions between vendor-specific identifiers and other versions of the specification of other vendors.
The example on the next page demonstrates using extensible features of the specification.
The code will compile both on implementations which support the extended API as well as those which do not.

```c
void ShowExtensibility(SLEngineItf *eng)
{
 SLresult res;
 SLboolean supported;
 SLAudioPlayer player;
 SLAcmeDistortionItf distortionItf;
 SLPlayItf playbackItf;
 SLmillibel vol;

 /* create an audio player */
 res = eng->SLCreateAudioPlayer(eng, ..., (void *)&player);
 CheckErr(res);
 res = (*player)->GetInterface(player, &SL_IID_ACME_DISTORTION,
 (void *)&distortionItf);
 if (SL_RESULT_FEATURE_UNSUPPORTED == res)
 {
 supported = false;
 } else
 {
 CheckErr(res);
 supported = true;
 }

 /* continue using the player normally whether the extension
 is supported or not. */
 res = (*player)->GetInterface(player, &SL_IID_PLAYBACK,
 (void *)&playbackItf);
 CheckErr(res);

 ...
 ...

 /* whenever calling an extension’s method, wrap it with a condition. */
 if (supported)
 {
 /* employ one of the interface’s methods */
 res = (*distortionItf)->SetDistortionGain(distortionItf, vol);
 CheckErr(res);
 }
}
```
4 Functional Overview

4.1 Object Overview

OpenSL ES represents entities in its architecture as objects, including:

- Engine Object
- Media Objects
- Metadata Extractor Objects
- Audio Output Mix Objects
- LED Array Objects
- Vibration Control Objects

The following sections provide an overview of each of these.

4.1.1 Engine Object

The engine object is the entry point to the OpenSL ES API. This object enables you to create all the other objects used in OpenSL ES.

The engine object is special in the sense that it is created using a global function, slCreateEngine() [see section 6.1]. The result of the creation process is the SLObjectItf interface [see section 8.29] of the engine object [see section 7.4]. The implementation is not required to support the creation of more than one engine at a given time.

The engine object can have two different modes of operation, thread-safe mode and non-thread safe mode. The application specifies the mode of operation upon engine object creation. See section 3.2 for details.

The engine object shall expose the SLThreadSyncItf interface [see section 8.39] to enable synchronization between the API’s callback contexts and the application contexts.

After creation of the engine object, most of the work will be done with the SLEngineItf interface [see section 8.17] exposed by this object.

An additional functionality of the engine object is querying implementation-specific capabilities. This includes the encoder and decoder capabilities of the system. The OpenSL ES API gives implementations some freedom regarding their capabilities, and these capabilities may even change according to runtime conditions. For this reason, during runtime the application may query the actual capabilities. However, this specification defines a minimum set of capabilities, expressed as a set of use-cases that shall be supported on every implementation, according to the profiles that are implemented. These use-cases are described in detail in section 4.7.
4.1.1.1 Devices

The engine object represents the system’s various multimedia-related devices via unique device IDs. It supports the enumeration of audio input, audio output, LED and vibrator devices as well as mechanisms to query their capabilities. Applications can use information regarding the devices’ capabilities to:

- Determine if they can even run on the system (for example, an application that can render only 8 kHz 8-bit audio might not be able to run on a system that can handle only sampling rates of 16 kHz and above at its outputs.)
- Configure the user interface accordingly so that the user is presented with the correct device choices in the UI menus.

The audio I/O device capabilities interface is described in section 8.10. The LED and Vibra IO device capabilities are described in section 8.18.

4.1.2 Media Objects

A media object implements a multimedia use case by performing some media processing task given a prescribed set of inputs and outputs. Media objects include (but are not limited to) objects that present and capture media streams, often referred to as players and recorders, respectively. They operate on audio data.

The following characteristics define a media object:

- The operation it performs, denoted by the creation method used to instantiate the media object.
- The inputs it draws data from, denoted as its data sources and specified at media object creation.
- The outputs it sends data to, denoted as its data sinks and specified at media object creation.

The media object creation methods are described in section 8.17. The audio player object is documented in section 7.2, the MIDI player object is documented in section 7.8 and the audio recorder object is documented in section 7.3.

4.1.2.1 Data Source and Sink Structures

A data source is an input parameter to a media object specifying from where the media object will receive a particular type of data (such as sampled audio or MIDI data). A data sink is an input parameter to a media object specifying to where the media object will send a particular type of data.
The number and types of data sources and sinks differ from one media object to another. The following characteristics define a data source or sink:

- Its data locator which identifies where the data resides. Possible locators include:
  - URIs (such as a filename)
  - Memory addresses
  - I/O devices
  - Output Mixes
  - Buffer queues

- Its data format which identifies the characteristics of the data stream. Possible formats include:
  - MIME-type based formats
  - PCM formats

An application specifies a media object’s respective data source(s) and sink(s) upfront in the creation method for the media object. Collectively, the media object together with its associated source(s) and sink(s) define the use case the application wants executed.

Data sources are documented in section 9.1.15 and data sinks are documented in section 9.1.14.

4.1.3 Metadata Extractor Object

Player objects support reading of the metadata of the media content. However, sometimes it is useful just to be able to read metadata without having to be able to playback the media. A Metadata Extractor object can be used for reading metadata without allocating resources for media playback. Using this object is recommended particularly when the application is interested only in presenting metadata without playing the content and when wanting to present metadata of multiple files. The latter is particularly interesting for generating playlists for presentation purposes because a player object would unnecessarily allocate playback resources. Furthermore, players cannot change their data source dynamically; therefore, for metadata extraction from multiple files, the application needs to create and destroy player objects many times, which is both inefficient, and may result in fragmentation of the heap. A Metadata Extractor object does not have a data sink, but it has one data source that can be dynamically changed.

The metadata extractor object is documented in section 7.7 and the metadata extraction interfaces are described in sections 8.22 and 8.23.

4.1.4 Audio Output Mix Object

The API allows for routing of audio to multiple audio outputs and includes an audio output mix object that facilitates this functionality. The application retrieves an output mix object from the engine and may specify that output mix as the sink for a media object. The audio
The audio output mix object is specified as a sink for a media object using the
SL_DATALOCATIONOUTPUTMIX data locator as described in section 9.2.9. The engine
populates the output mix with a set of default audio output devices. The application may
query for this list of devices or request changes to it via the SLOutputMixItf interface. The API does not provide a direct audio output IO-device as a sink for media objects.

The audio output mix object is defined in section 7.9 and the output mix interface is
described in section 8.30.

4.1.5 LED Array Control Object

Control of the device’s LEDs is handled via the LED array object. Querying the capabilities
of and creating a LED array object is an engine-level operation, while control over
individual LEDs is handled by the object.

The LED array object is documented in section 7.5 and the LED array interface is
documented in section 8.21.

4.1.6 Vibration Control Object

Control of the device’s vibration support is handled via the Vibra object. Querying the
capabilities of and creating a Vibra object is an engine-level operation, while control of the
actual vibration is handled by the object.

The vibra object is documented in section 7.10 and the vibra interface is documented in
section 8.40.
4.2 Sampled Audio

This section introduces OpenSL ES functionality for the playback and recording of sampled audio content.

An audio player [see section 7.2] is used for sampled audio playback. OpenSL ES supports both file-based and in-memory data sources, as well as buffer queues, for efficient streaming of audio data from memory to the audio system. The API supports data encoded in many formats, although the formats supported by a device are implementation-dependent. An audio player can also be used in order to play back pre-created Java Tone Sequences.

An audio recorder [see section 7.3] is used for capturing audio data. Audio capture is an optional component of OpenSL ES, so some devices may fail creation of audio recording objects. Note that buffer queues are not supported on the audio recorder.

4.2.1 Recommended Codec

An OpenSL ES implementation of the game profile should be capable of playing content encoded with an MP3 codec (including MPEG-1 layer-3 [MPEG1], MPEG-2 layer-3 [MPEG2], and MPEG-2.5 layer-3 variants). (For a definition of the word "should", see section 1.5). Please note that MPEG-2.5 layer-3 is not useful for 3D audio rendering since it only supports sampling rates of 12 kHz and below.

4.3 Playback of MIDI

OpenSL ES supports MIDI playback using the standard player creation mechanism, the creation method SLEngineItf::CreateMIDIPlayer() [see section 8.17]. This method provides the ability to specify a MIDI data source and an audio output device, as well as an optional data source for an instrument bank data source and data sinks for an LED array output device and a Vibra output device. OpenSL ES supports MIDI data sources that refer to files (SP-MIDI [SP-MIDI] and Mobile XMF [mXMF]) and MIDI buffer queues. Playback properties are controlled via the standard OpenSL ES player interfaces, such as SLVolumeItf [see section 8.43], SLPlayItf [see section 8.32], SLPlaybackRateItf [see section 8.33], and SLSeekItf [see section 8.38]. MIDI players also support metadata extraction via the SLMetadataExtractionItf [see section 8.22]. The MIDI player object is documented in section 7.8.

4.3.1 Support of Mobile DLS

OpenSL ES supports Mobile DLS [mDLS] soundbanks as stand-alone files provided to a MIDI player on creation or embedded within a Mobile XMF file. In addition, the MIDI player supports the GM soundbanks [MIDI] by default.

In several cases, a MIDI player will not be able to handle two DLS banks at the same time (for example, bank provided during MIDI player creation and bank embedded in the
content). In such a case, player creation may fail, and the application can retry the creation without providing the additional bank.

When a program is selected for a MIDI channel (using bank select / program change messages), the MIDI player will first look for the program in the embedded DLS bank, if such exists. If it is not found, the MIDI player will look in the DLS bank that was provided on creation, if applicable. If it is still not found, the MIDI player will try to load the program from the built-in GM bank. If the program does not exist there either, the MIDI player shall generate silence on the specified channel, but should still keep track of that channel’s state.

4.3.2 Programmatic Control of the MIDI Player

In addition to file playback, the application can generate MIDI data programatically and pass it to a MIDI player in one of two methods:

Real-time messages are passed through the **SLMIDIMessageItf** [see section 8.24] interface. Such messages lack any timing information, and are executed by the MIDI player as soon as they are sent. The play state does not affect passing real-time MIDI messages; therefore, it is not necessary to even instantiate SLPlayItf if only real-time messages are used to control the MIDI player (with or without a soundbank source).

Time-stamped messages are passed through buffer-queues. The application must create the MIDI player with a buffer queue source, and then enqueue buffers containing time-stamped MIDI messages. The format of the buffers is identical to the format of the content of a MTrk chunk (not including any headers, just the raw time-message-time-message-... data), as defined in the MIDI specification. When working in this manner, the application must manually set the initial tempo and tick resolution if it does not want the defaults, through the **SLMIDITempoItf** interface [see section 8.26].

4.4 3D Audio

Using two ears, a human can determine the direction of a sound source in three-dimensional (3D) space. The acoustic waves that arrive at each ear cause movement of the eardrums, which in turn can be represented as a stereo audio signal that incorporates the 3D information.

OpenSL ES provides the ability to position and move sound sources in 3D space. Implementations use this information so that when the sound sources are rendered, they appear to the listener of the sounds to originate from their specified locations. The exact algorithm used to synthesize the 3D position is implementation-dependent. However, a number of techniques exist, with HRTF-based (Head-Related Transfer Function) synthesis being a common technique.

Different sound sources have different 3D acoustic characteristics. To help model these, OpenSL ES exposes a rich set of tunable 3D parameters. For example, applications can:

- modify a sound source’s distance model and its sound cones using the **SL3DSourceItf** interface [see section 8.6];
adjust the amount of Doppler heard when a sound source passes a listener using the
SL3DDopplerItf interface [see section 8.2];

- set the size of a sound source using the macroscopicy interface SL3DMacroscopicItf
  [see section 8.5].

OpenSL ES is an ideal companion to 3D graphic APIs such as OpenGL ES. The 3D graphics
engine will render the 3D graphics scene to a two-dimension display device, and the
OpenSL ES implementation will render the 3D audio scene to the audio output device.

4.4.1 3D Sources

4.4.1.1 3D Groups

OpenSL ES supports two methods for controlling the 3D properties of a player. The first
method involves directly exposing 3D interfaces on the player object, the 3D properties of
which are then controlled using these interfaces.

Sometimes developers will want to position several sound sources with the same 3D
properties at the same location. For example, a helicopter may have three sound sources:
the engine, main rotor blade, and tail rotor blade. These sound sources are positioned
sufficiently close to each other that at a certain distance from the listener all the sound
sources can be approximated to one location. The application could use three separate
players but this is likely to result in the use of three separate, potentially
CPU-intensive, Head-Related Transfer Functions (HRTFs). To solve this, OpenSL ES allows
an application to group two or more players that require exactly the same 3D properties
using a 3D group. This is the second method for controlling a player’s 3D properties.

It is not possible to use both of these methods at the same time: the 3D interfaces are
exposed either on the player or on its 3D group.

4.4.1.2 When is a Player Rendered in 3D?

By default, players are not rendered in 3D; the application can still position the player on a
one-dimensional line by setting its stereo position [see section 8.43], but no 3D effect
should be applied to the player.

For a player to be rendered in 3D, it is necessary to expose a specific 3D interface during
the player’s creation. The specific interface that needs to be exposed is dependent on
whether the player is to be in a 3D group.

In a standard case, when a player is not to be a member of a 3D group, the
SL3DLocationItf interface [see section 8.4] is exposed on the player to signify that the
player is to be rendered in 3D. As the presence of the SL3DLocationItf interface
determines whether the player is 3D, this interface must be exposed on the player if any of
the other 3D interfaces (SL3DSourceItf [see section 8.6], SL3DDopplerItf [see section
8.2], SL3DMacroscopicItf [see section 8.5]) are to be exposed on the player.
In the case when a player is to be a member of a 3D group, the SL3DGroupingItf interface should be exposed on the player. The player is treated as 3D and all subsequent 3D interfaces must be exposed on the 3D group, not on the player.

The SL3DLocationItf and SL3DGroupingItf interfaces are mutually exclusive. They cannot be exposed simultaneously by the same object. Any attempt to create an object that exposes both interfaces will fail.

The decision on whether to render the player in 3D is made at creation time, so it is not possible to add or remove either the SL3DLocationItf interface or SL3DGrouping interfaces dynamically using the SLDynamicInterfaceManagementItf interface [see section 8.14].

The term 3D source is used in this specification to refer to both 3D positioned players and 3D groups.

4.4.2 3D Parameters

4.4.2.1 Coordinate System

All 3D vectors are expressed in right-handed Cartesian coordinates of the form \((x, y, z)\), where \(x\) represents the x-axis position, \(y\) the y-axis position and \(z\) the z-axis position.

4.4.2.2 Precision

Implementations of OpenSL ES are not required to support the full precision implied by the range of the parameter of the 3D functions. That is, a developer should not assume that minor changes in a parameter value will necessarily affect the output audio. By way of illustration: if the SL3DLocationItf interface method SetLocation() [see section 8.4] is used in order to change the 3D location of a 3D source by just 1 mm, it may actually generate bit-exact audio to that which would be generated if the 3D source had not been moved, as internally the implementation might support, say, 28 bits of precision rather than the full 32 bits implied by the type of the vector.

Even when an implementation does not internally support full precision, the implementation shall still return the last set value in a get query for the same parameter, not a rounded value.
4.4.2.3 Interactivity

OpenSL ES is designed for interactive applications. For this reason, there should be no discernable audio glitches when changing any of the 3D parameters.

4.4.3 Levels of 3D Sources

The perceived loudness of a 3D source within the minimum distance (specified using SL3DSourceItf::SetRolloffDistances() [see section 8.6]) is equal to the perceived loudness of a non-3D stereo source with gain of -3 dB. This applies when the same typical program material is used as input for both sources such that the 3D source has mono material as input and the stereo source has the same material duplicated in both its channels, and no additional effects (such as orientation or reverb) are used for either source.

4.4.4 3D Positioning Multi-Channel Players

In most cases, there is no benefit gained in 3D positioning multi-channel data (such as stereo) over mono data. However, some implementations may take advantage of the multi-channel data when rendering a player’s macroscopic behavior [see section 8.5]. Implementations shall support exposing the 3D interfaces on a player whose data source is multiple-channel. The exact behavior is undefined, but all channels in the input data should be represented in the 3D positioned sound source.

4.4.4.1 3D and MIDI Players

A MIDI player can be 3D positioned in the same way as a sampled audio player. In such cases it is the output from the synthesizer that is 3D positioned.

4.4.5 Object Relationships

The relationship between the two 3D audio objects (listener [see section 7.6] and 3D groups [see section 7.1]) and the engine and players is summarized in the UML diagram in Figure 4.
An engine creates multiple players, 3D groups and listeners. A player may be a member of one 3D group at a time and many players may be members of the same 3D group.

4.5 Effects

OpenSL ES supports various audio effects, from pan control to advanced 3D audio and environmental reverberation. Rudimentary effects such as panning are handled using the SLVolumeItf interface [see section 8.43] and 3D audio is controlled using its own set of interfaces [see section 4.4]. This section documents the remaining effects: bass boost, equalization, reverberation and virtualization.

4.5.1 Effects Architecture

Effects are handled in the same way as the other controls in the API and as such an effect is controlled using an interface exposed on an object. Exposing an effect interface on different object types will result in the effect being applied to different points in the audio processing chain.

Global effects are exposed via interfaces on an Output Mix object and behave as global insert effects on the output mix. It is not necessary to use the effect send interface for the effect to be audible.

Auxiliary effects, of which the only standardized auxiliary effect is reverb, are also exposed via interfaces on an Output Mix object. For a player to contribute to the auxiliary effect, it is necessary to expose the effect send interface [see section 8.14] on the players for the effect to be applied.

OpenSL ES 1.0 does not mandate any per-player effects. However, where supported they should be exposed as interfaces directly on the player.

4.5.2 Bass Boost

Bass boost is an audio effect to boost or amplify low frequencies of the sound. OpenSL ES supports bass boost via SLBassBoostItf [see section 8.11].
4.5.3 Equalization

Equalizer is an audio filter to change the frequency envelope of the sound. OpenSL ES supports equalizer via SLEqualizerItf [see section 8.20].

4.5.4 Virtualization

OpenSL ES supports audio virtualizer functionality. Audio virtualization is a general name for an effect to virtualize audio channels. Typically this effect is used in order to compensate the mismatch between the loudspeaker setup used when producing the audio and the audio output device used when the audio is played back by the end-user. The exact behavior of this effect is dependent on the number of audio input channels and the type and number of audio output channels of the device. For example, in the case of a stereo input and stereo headphone output, a stereo widening is used when this effect is turned on. An input with 5.1-channels similarly uses some virtual surround algorithm.

OpenSL ES supports virtualization via SLVirtualizerItf [see section 8.41].

4.5.5 Reverberation

A sound generated within a room travels in many directions. The listener first hears the direct sound from the source itself. Later, he or she hears discrete echoes caused by sound bouncing off nearby walls, the ceiling and the floor. As sound waves arrive after undergoing more and more reflections, individual reflections become indistinguishable and the listener hears continuous reverberation that decays over time.

Reverb is vital for modeling a listener’s environment. It can be used in music applications to simulate music being played back in various environments, or in games to immerse the listener within the game’s environment.

OpenSL ES supports one global reverb environment that can be controlled by two different interfaces, one supporting a fixed set of simple presets and another supporting a more advanced interactive interface.

The preset-based interface is most suited to music applications where the environment may be selected within the user interface. OpenSL ES supports a preset reverb via the SLPresetReverbItf interface [see section 8.35].

The more advanced environmental interface is suited to game applications, where the environment may change as a listener moves around. OpenSL ES supports an environmental reverb via the SLEnvironmentalReverbItf interface [see section 8.19].

Reverb is an auxiliary effect, so only selected players have reverb applied. For a player to include reverb, it is necessary to expose the SLEffectSendItf interface [see section 8.14] and expose one of the reverb interfaces on the Output Mix.
4.6 Example Use Cases

This section illustrates the use of OpenSL ES objects and interfaces in some typical audio usage scenarios.

4.6.1 Sampled Audio Playback

Figure 5: Sampled audio playback use case

An Audio Player object [see section 7.2] is used for sampled audio playback. An Audio Player is created using the SLEngineItf interface of the engine object. Upon creation, we associate the Audio Player with an Output Mix [see section 7.9] (which we create using the SLEngineItf interface [see section 8.17]) for audio output. We also set the data source of the Audio Player during creation. The data source could be, for example, a URI pointing to an audio file in the local file system. The Output Mix is by default associated with the system-dependent default output device.
4.6.2 MIDI Playback

MIDI playback is accomplished in a similar manner to sampled audio playback, as described in the previous section. The only difference is that an MIDI Player object [see section 7.8] is used for playback instead of an Audio Player object.
4.6.3 3D Audio

Figure 7: 3D audio use case

This use case illustrates positional 3D audio rendering and use of two sampled audio players simultaneously. Both Audio Player objects [see section 7.2] are created using the SLEngineItf interface [see section 8.17] of the engine object. Upon creation, we associate both Audio Players with the same Output Mix [see section 7.9] (which we also create with the SLEngineItf interface) for audio output.

Requesting SL3DLocationItf interfaces [see section 8.4] from the Audio Players upon their creation causes them to be rendered as 3D sources. The virtual listener is controlled with a Listener object [see section 7.6] which we also create using the SLEngineItf interface of the engine object.

The reverberation of the virtual acoustical space is controlled by SLEnvironmentalReverbItf interface [see section 8.19] of the Output Mix. SLEffectSendItf interfaces [see section 8.16] are exposed on the Audio Players to feed their audio signal to the reverberator of the Output Mix.
4.6.4 Recording Audio

Figure 8: Recording audio use case

An Audio Recording use case is handled by an Audio Recorder object [see section 7.3]. We create the Audio Recorder object using SLEngineItf interface of the engine object. Upon creation, we associate it with an audio data source, which can be, for example, a microphone (an audio input device). The data sink of the Audio Recorder can be a URI pointing to an audio file in the local file system to which the audio will be recorded.
4.6.5 Reading Metadata

A Metadata Extractor object [see section 7.7] will read the metadata of an audio file without allocating resources for audio playback. As in other use-cases, we create the object using the SLEngineItf interface of the engine object and upon creation, we set the data source of the Metadata Extractor. The data source is typically a URI pointing to an audio file in the local file system. However, the Metadata Extractor supports the SLDynamicSourceItf interface [see section 8.15] which we can use to change the data source. Therefore we may extract metadata from multiple files (in series) without creating a new Metadata Extractor object for every single file. The SLMetadataExtractionItf and SLMetadataTraversalItf interfaces [see sections 8.22 and 8.23] are used for actually reading and traversing the metadata from a file.

4.7 Minimum Requirements

Minimum requirements determine what functionality can be relied on between implementations, which helps write more portable applications. Section 7 introduces the concept of a mandated interface and for each profile defines the interfaces that shall be supported for each object type. This gives the application developer a guarantee of what interfaces are supported on each object but in practice resource limitations will limit the number of concurrent objects that can be supported at a given time. In order to strengthen the guarantee of what is supported in all implementations for each profile we define a set of use-cases that must be supported.

The use-cases are defined using diagrams each of which specifies many possible use-cases. Implementations must support all the different choices that are presented in the diagram. These are highlighted using “OR” and “/”. For example, the use-case below shows that a conformant implementation must support a use case with an audio player with a “Buffer Source (Type 1)” data source and a separate use-case with an audio player
with a “Buffer Queue Source (Type 1)” data source. The diagram also shows that the implementation must support use-cases where `SL3DDopplerItf` is exposed and use-cases where `SLRatePitchItf` is exposed.

**Figure 10: Example use case diagram**

In addition to supporting the exact use-cases shown in each diagram, an implementation must support all the use-cases that can be formed by removing any non-implicit interfaces and objects, as long as no other changes are made. For example, from the use-case diagram in Figure 10 it can be determined that the implementation must support a use-case with an audio player with only the `SLPlayItf` interface exposed.

Unless specified otherwise, an implementation must support the whole range of parameters for an interface exposed on an object. Where only a subset of parameters needs to be supported, this is documented in the use-case or explicitly in the specification. For example, the implementation need only support rates from 500 to 2000 ‰ in the use-case specified in Figure 10.
4.7.1 Phone Profile

4.7.1.1 Use Case 1

Figure 11: Phone profile – use case 1
4.7.1.2 Use Case 2

**Midi Player**

For playback of MIDI sound effects

- *File Source (Type 1 or 2)*
- *SLVolumeItf*
- *SLSeekItf*
- *SLObjectItf & SLDynamicInterfaceManagementItf*
- *Fill level accuracy 10%*
- *Output Mix*
- *Default Output*

**Audio Player**

For playback of a music file

- *File Source (Type 1 or 2)*
- *SLVolumeItf & SLSeekItf*
- *SLObjectItf & SLDynamicInterfaceManagementItf*
- *Fill level accuracy 10%*
- *Output Mix*
- *Default Output*

**Audio Player**

For playback of Java Tone Sequences

- *Buffer Source (Type 3)*
- *Java Tone Sequence*
- *SLVolumeItf & SLSeekItf*
- *SLObjectItf & SLDynamicInterfaceManagementItf*
- *Fill level accuracy 10%*
- *Output Mix*
- *Default Output*

---

*Figure 12: Phone profile – use case 2*
Use Case 3

Audio Player
For playback of a music file

Audio Player
For playback of sound effects

Buffer Source (Type 4)

File Source (Type 6)

Figure 13: Phone profile – use case 3
4.7.2 Music Profile

4.7.2.1 Use Case 1

Figure 14: Music profile – use case 1
4.7.3 Game Profile

4.7.3.1 Use Case 1

Figure 15: Game profile – use case 1
4.7.3.2 Use Case 2

**Figure 16: Game profile – use case 2**
4.7.3.3 Use Case 3

Figure 17: Game profile – use case 3
4.7.3.4 Use Case 4

Figure 18: Game profile – use case 4
4.7.3.5 Use Case 5

File Source (Type 1 or 2)

Audio Player
For playback of a music file

SLPlayItf
SLVolumeItf
SLSeekItf
SL3DLocationItf
SL3DSourceItf
SLPrefetchStatusItf
Fill level accuracy 10%

SLRearPitchItf
Rate 500->2000

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf
SLMuteSoloItf
SLMetadataTraversalIt
SLMetadataExtractionItf
SLMIDITempoItf
SLMIDIMessageItf
SLMIDIMuteSoloItf
SLMIDITimeItf
SL3DLocationItf
SL3DSourceItf
SLPrefetchStatusItf
Fill level accuracy 10%

MIDI Player
For playback of MIDI sound effects in 3D

File Source (Type 4)
Bank file

SLPlayItf
SLVolumeItf
SLSeekItf
SL3DLocationItf
SL3DSourceItf
SLPrefetchStatusItf
Fill level accuracy 10%

SLEffectSendItf
Num. sends 1

SLPlayItf
SLVolumeItf
SLSeekItf
SLMuteSoloItf
SLMetadataTraversalIt
SLMetadataExtractionItf
SLMIDITempoItf
SLMIDIMessageItf
SLMIDIMuteSoloItf
SLMIDITimeItf
SL3DLocationItf
SL3DSourceItf
SLPrefetchStatusItf
Fill level accuracy 10%

Engine

Listener

Output Mix

Default Output

Figure 19: Game profile – use case 5
4.7.3.6 Use Case 6

Figure 20: Game profile – use case 6
4.7.3.7 Use Case 7

Figure 21: Game profile – use case 7
4.7.3.8 Use Case 8

Figure 22: Game profile – use case 8
### 4.7.4 Data Sources

#### File sources

<table>
<thead>
<tr>
<th>File Source (Type 1)</th>
<th>File Source (Type 2)</th>
<th>File Source (Type 3)</th>
<th>File Source (Type 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Location</strong></td>
<td>File System</td>
<td>Location</td>
<td>File System</td>
</tr>
<tr>
<td><strong>Format Type</strong></td>
<td>MIME</td>
<td><strong>Format Type</strong></td>
<td>MIME</td>
</tr>
<tr>
<td><strong>MIME Type</strong></td>
<td>WAV/PCM</td>
<td><strong>Channels</strong></td>
<td>1/2</td>
</tr>
<tr>
<td><strong>Channels</strong></td>
<td>1/2</td>
<td><strong>SamplingSec</strong></td>
<td>8192/20924/3384/148K</td>
</tr>
<tr>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
</tr>
<tr>
<td><strong>Channel Mask</strong></td>
<td>None</td>
<td><strong>Channel Mask</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Byte Order</strong></td>
<td>Native</td>
<td><strong>Byte Order</strong></td>
<td>Native</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Source (Type 5)</th>
<th>File Source (Type 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Location</strong></td>
<td>File System</td>
</tr>
<tr>
<td><strong>Format Type</strong></td>
<td>MIME</td>
</tr>
<tr>
<td><strong>MIME Type</strong></td>
<td>Mobile 3MF</td>
</tr>
<tr>
<td><strong>Min SWF tracks (MTRk chunks)</strong></td>
<td>16</td>
</tr>
<tr>
<td><strong>SamplingSec</strong></td>
<td>8/16/1k</td>
</tr>
<tr>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
</tr>
<tr>
<td><strong>Channel Mask</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Byte Order</strong></td>
<td>Native</td>
</tr>
</tbody>
</table>

#### Buffer sources

<table>
<thead>
<tr>
<th>Buffer Source (Type 1)</th>
<th>Buffer Source (Type 2)</th>
<th>Buffer Source (Type 3)</th>
<th>Buffer Source (Type 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Location</strong></td>
<td>Memory</td>
<td>Location</td>
<td>Memory</td>
</tr>
<tr>
<td><strong>Format Type</strong></td>
<td>PCM</td>
<td><strong>Format Type</strong></td>
<td>MIME</td>
</tr>
<tr>
<td><strong>Channels</strong></td>
<td>1</td>
<td><strong>Channels</strong></td>
<td>1/2</td>
</tr>
<tr>
<td><strong>SamplingSec</strong></td>
<td>8192/20924/3384/148K</td>
<td><strong>SamplingSec</strong></td>
<td>8192/20924/3384/148K</td>
</tr>
<tr>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
</tr>
<tr>
<td><strong>Channel Mask</strong></td>
<td>None</td>
<td><strong>Channel Mask</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Byte Order</strong></td>
<td>Native</td>
<td><strong>Byte Order</strong></td>
<td>Native</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer Source (Type 5)</th>
<th>Buffer Source (Type 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Location</strong></td>
<td>Memory</td>
</tr>
<tr>
<td><strong>Format Type</strong></td>
<td>PCM</td>
</tr>
<tr>
<td><strong>Channels</strong></td>
<td>1/2</td>
</tr>
<tr>
<td><strong>SamplingSec</strong></td>
<td>8/16/1k</td>
</tr>
<tr>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
</tr>
<tr>
<td><strong>Channel Mask</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Byte Order</strong></td>
<td>Native</td>
</tr>
</tbody>
</table>

#### Buffer queue sources

<table>
<thead>
<tr>
<th>Buffer Queue Source (Type 1)</th>
<th>Buffer Queue Source (Type 2)</th>
<th>Buffer Queue Source (Type 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Location</strong></td>
<td>Buffer Queue</td>
<td>Location</td>
</tr>
<tr>
<td><strong>Num Buffers</strong></td>
<td>8</td>
<td><strong>Num Buffers</strong></td>
</tr>
<tr>
<td><strong>Format Type</strong></td>
<td>PCM</td>
<td><strong>Format Type</strong></td>
</tr>
<tr>
<td><strong>Channels</strong></td>
<td>1</td>
<td><strong>Channels</strong></td>
</tr>
<tr>
<td><strong>SamplingSec</strong></td>
<td>8192/20924/3384/148K</td>
<td><strong>SamplingSec</strong></td>
</tr>
<tr>
<td><strong>Bits/Sec</strong></td>
<td>8/8/10/16</td>
<td><strong>Bits/Sec</strong></td>
</tr>
<tr>
<td><strong>Channel Mask</strong></td>
<td>None</td>
<td><strong>Channel Mask</strong></td>
</tr>
<tr>
<td><strong>Byte Order</strong></td>
<td>Native</td>
<td><strong>Byte Order</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer Queue Source (Type 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Location</strong></td>
</tr>
<tr>
<td><strong>Num Buffers</strong></td>
</tr>
<tr>
<td><strong>Format Type</strong></td>
</tr>
<tr>
<td><strong>Channels</strong></td>
</tr>
<tr>
<td><strong>SamplingSec</strong></td>
</tr>
<tr>
<td><strong>Bits/Sec</strong></td>
</tr>
<tr>
<td><strong>Channel Mask</strong></td>
</tr>
<tr>
<td><strong>Byte Order</strong></td>
</tr>
</tbody>
</table>

**Figure 23: Data sources**
PART 2: API REFERENCE
5 Base Types and Units

OpenSL ES defines a set of cross-platform fixed width types that are used within the API. The definition of these are system-dependent and the platform provider must specify these types. OpenSL ES also defines a set of types for different units required by the API, such as distance and volume. To aide programmability, most of these units are based on the thousandth unit of a SI unit [ISO1000].

5.1 Standard Units

The table below shows the standard types for units used in OpenSL ES.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Measurement</th>
<th>C type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume level</td>
<td>millibel (mB)</td>
<td>SLmillibel</td>
</tr>
<tr>
<td>Time</td>
<td>millisecond (ms)</td>
<td>SLmillisecond</td>
</tr>
<tr>
<td>Frequency</td>
<td>milliHertz (mHz)</td>
<td>SLmilliHertz</td>
</tr>
<tr>
<td>Distance</td>
<td>millimeter (mm)</td>
<td>SLmillimeter</td>
</tr>
<tr>
<td>Angle</td>
<td>millidegree (mdeg)</td>
<td>SLmillidegree</td>
</tr>
<tr>
<td>Scale/Factor</td>
<td>permille (‰)</td>
<td>SLpermille</td>
</tr>
</tbody>
</table>

5.2 Base Types

typedef <system dependent> SLint8;
typedef <system dependent> SLuint8;
typedef <system dependent> SLint16;
typedef <system dependent> SLuint16;
typedef <system dependent> SLint32;
typedef <system dependent> SLuint32;
typedef SLuint32   SLboolean;
typedef SLuint8   SLchar;
typedef SLint16   SLmillibel;
typedef SLuint32   SLmillisecond;
typedef SLuint32   SLmilliHertz;
typedef SLuint32   SLmillimeter;
typedef SLuint32   SLmillidegree;
typedef SLuint16   SLpermille;
typedef SLuint32   SLmicrosecond;
typedef SLuint32   SLresult;
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLint8</td>
<td>An 8-bit signed type. The definition of this type is system-dependent.</td>
</tr>
<tr>
<td>SLuint8</td>
<td>An 8-bit unsigned type. The definition of this type is system-dependent.</td>
</tr>
<tr>
<td>SLint16</td>
<td>A 16-bit signed type. The definition of this type is system-dependent.</td>
</tr>
<tr>
<td>SLuint16</td>
<td>A 16-bit unsigned type. The definition of this type is system-dependent.</td>
</tr>
<tr>
<td>SLint32</td>
<td>A 32-bit signed type. The definition of this type is system-dependent.</td>
</tr>
<tr>
<td>SLuint32</td>
<td>A 32-bit unsigned type. The definition of this type is system-dependent.</td>
</tr>
<tr>
<td>SLboolean</td>
<td>A Boolean type, where zero is false and all remaining values are true.</td>
</tr>
<tr>
<td>SLchar</td>
<td>A character type. All strings within the API, except where explicitly defined otherwise, are UTF-8, null-terminated, SLchar arrays.</td>
</tr>
<tr>
<td>SLmillibel</td>
<td>A type for representing volume in millibels (mB), one thousandth of a Bel, one hundredth of a decibel.</td>
</tr>
<tr>
<td>SLmillisecond</td>
<td>A type for representing time in milliseconds (ms), one thousandth of a second.</td>
</tr>
<tr>
<td>SLmilliHertz</td>
<td>A type for representing frequency in milliHertz (mHz), one thousandth of a Hertz.</td>
</tr>
<tr>
<td>SLmillimeter</td>
<td>A type for representing distance in millimetres (mm), one thousandth of a meter.</td>
</tr>
<tr>
<td>SLmillidegree</td>
<td>A type for representing an angle in millidegrees (mdeg), one thousandth of a degree.</td>
</tr>
<tr>
<td>SLpermille</td>
<td>A type for representing a scale or factor in permille. One permille (1‰) is equal to a factor of 0.001. One thousand permille (1000‰) is equal to a factor of one.</td>
</tr>
<tr>
<td>SLmicrosecond</td>
<td>A type for representing time in microseconds, one millionth of a second.</td>
</tr>
<tr>
<td>SLresult</td>
<td>A type for standard OpenSL ES errors that all functions defined in the API return.</td>
</tr>
</tbody>
</table>
## 6 Functions

### 6.1 slCreateEngine Function

**slCreateEngine**

```c
SLresult SLAPIENTRY slCreateEngine(
 SLObjectItf *pEngine,
 SLuint32 numOptions,
 const SLEngineOption *pEngineOptions,
 SLuint32 numInterfaces,
 const SLInterfaceID *pInterfaceIds,
 const SLboolean * pInterfaceRequired
)
```

**Description**
Initializes the engine object and gives the user a handle.

**Pre-conditions**
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEngine</td>
<td>[out] Pointer to the resulting engine object.</td>
</tr>
<tr>
<td>numOptions</td>
<td>[in] The number of elements in the options array. This parameter value is ignored if <code>pEngineOptions</code> is NULL. Similarly, a 0 value initializes the engine without the optional features being enabled.</td>
</tr>
<tr>
<td>pEngineOptions</td>
<td>[in] Array of optional configuration data. A NULL value initializes the engine without the optional features being enabled.</td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in] Number of interfaces that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td>pInterfaceIds</td>
<td>[in] An array of <code>numInterfaces</code> interface IDs, which the object should support. This parameter is ignored if <code>numInterfaces</code> is zero.</td>
</tr>
<tr>
<td>pInterfaceRequired</td>
<td>[in] An array of <code>numInterfaces</code> flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated and the error code <code>SL_RESULT_FEATURE_UNSUPPORTED</code> will be then returned. This parameter is ignored if <code>numInterfaces</code> is zero.</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
### slCreateEngine

<table>
<thead>
<tr>
<th>SL_RESULT_SUCCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>SL_RESULT_RESOURCE_ERROR</td>
</tr>
</tbody>
</table>

**Comments**

The options supported by an individual implementation are implementation-dependent. Standardized options are documented in section 9.2.15. The engine is destroyed via the destroy method in the SLObjectItf interface [see section 8.29].

**See Also**

Engine object [see section 7.4].

---

#### 6.2 slQueryNumSupportedEngineInterfaces Function

**slQueryNumSupportedEngineInterfaces**

```c
SLresult SLAPIENTRY slQueryNumSupportedEngineInterfaces(
 SLuint32 * pNumSupportedInterfaces
);
```

**Description**

Queries the number of supported interfaces available on engine object.

**Parameters**

- **pNumSupportedInterfaces**: [out] Identifies the number of supported interfaces available. Must be non-NULL.

**Return value**

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

**Comments**

The number of supported interfaces will include both mandated and optional interfaces available for the engine object.

**See also**

slQuerySupportedEngineInterfaces(), SLEngineItf::QueryNumSupportedInterfaces [see section 8.17].
### 6.3 slQuerySupportedEngineInterfaces Function

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the supported interfaces on engine object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td><strong>index</strong> [in] Incrementing index used to enumerate available interfaces. Supported index range is 0 to N-1, where N is the number of supported interfaces.</td>
</tr>
<tr>
<td></td>
<td><strong>pInterfaceId</strong> [out] Identifies the supported interface corresponding to the given index. Must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The number of supported interfaces will include both mandated and optional interfaces available for the engine object.</td>
</tr>
<tr>
<td>See also</td>
<td>slQueryNumSupportedEngineInterfaces(), SLEngineItf::QueryNumSupportedInterfaces [see section 8.17].</td>
</tr>
</tbody>
</table>

```c
SLresult SLAPIENTRY slQuerySupportedEngineInterfaces(
 SLuint32 index,
 SLInterfaceID * pInterfaceId
);
```
7 Object Definitions

This section documents all the object types supported by the API. Some object types are mandated to be supported only in a selection of the profiles. Where this is the case, the object’s description will include a profile note stating this. If the object does not include a profile note, the object is mandated to be supported in all profiles.

Each object type has a list of **Mandated Interfaces** that must be supported for that object type. For each mandated object type in a given profile, an implementation must support the creation of at least one object with every mandated interface exposed on that object. Even if the object type itself is not mandated, if the implementation allows creation of objects of that type, it must still support all the mandated interfaces for the object type. The list of mandated interfaces may vary according to profile, as documented in the profiles notes. The mandated interface sections also document whether an interface is implicit or must be supported dynamically.

Besides of the mandated interfaces, an object is free to support any interfaces defined in this specification (and any vendor-specific interfaces). However, some interfaces specified in this specification make much more sense with a specific object type than some other interfaces. Therefore, for information only, each object type has also a list of **Applicable Optional interfaces**. The implementer is not limited to support only these listed interfaces, but these lists provide the application developer a hint concerning which optional interfaces might be supported.
7.1 3D Group

Description

In the majority of cases, 3D sound sources will be independently controlled and positioned and in these cases the application exposes the 3D interfaces on the player itself. However, there are circumstances where several sound sources may have the same 3D properties, including position. The 3D group object provides a convenient mechanism for grouping several sound sources with the same 3D properties. This is primarily used in order to conserve 3D resources but can also provide convenience to the application developer.

Typically, 3D resources can only be conserved when all players in the 3D group have the same data sink.

See section C.4 for an example using this object.

| PROFILE NOTES |
| Creation of objects of this type is mandated only in the Game profile. |

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.
This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.
This interface is an implicit interface on this object.

SL3DLocationItf [see section 8.4]

This interface exposes controls for positioning and orienting the 3D group.
This interface is an implicit interface on this object.

SL3DDopplerItf [see section 8.2]

This interface exposes controls for the Doppler and velocity of the 3D group. This interface is a dynamic interface on this object. See section 3.1.6 for details about dynamic interfaces.

| PROFILE NOTES |
| This interface is mandated only in the Game profile. |
SL3DSourcelf [see section 8.6]

This interface exposes 3D source-oriented controls of the 3D group.

**PROFILE NOTES**

*This interface is mandated only in the Game profile.*

Applicable Optional Interfaces

SL3DMacroscopiclf [see section 8.5]

This interface exposes controls for setting the size (physical dimensions) of the 3D group.
7.2 Audio Player

Description

The audio player media object plays the piece of content specified by the data source performing any implicit decoding, applying any specified processing, and rendering it to the destination specified by the data sink.

See Appendix B: and Appendix C: for examples using this object.

Java Tone Sequence Playback

It is also possible to play back pre-created Java Tone Sequences using an Audio Player Object. To do this, the application needs to do the following:

1. Set the Address Data Locator Structure (SLDataLocator_Address) in the Audio Player’s SLDataSource to contain a pointer to and the length of the byte array (array of SLuint8) containing the desired Java Tone Sequence.

2. Set the MIME Data Format Structure (SLDataFormat_MIME) in the SLDataSource to say that the format is “audio/x-tone-seq”.

Please see JSR-135 [JSR135] ToneControl for details on the Java Tone Sequence bytecode format.

PROFILE NOTES

Java Tone Sequence playback is mandated only in the Phone and Game profiles. PCM sampled audio playback is mandated in all profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used to add dynamic interfaces [see section 3.1.6] to the object.

This interface is an implicit interface on this object.

SLPlayItf [see section 8.32]

This interface controls the playback state of the audio player.

This interface is an implicit interface on this object.
SL3DDopplerItf [see section 8.2]
This interface exposes Doppler and velocity controls. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DGroupingItf [see section 8.3]
This interface exposes controls for adding and removing a player to and from a 3D group.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DLocationItf [see section 8.4]
This interface exposes controls for changing a player’s location in 3D space.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DSourceItf [see section 8.6]
This interface exposes player-specific 3D controls.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLBufferQueueItf [see section 8.12]
This interface enables feeding data to the player using buffers. Note that an attempt to instantiate an SLBufferQueueItf on a player whose data source is not of type SL_DATALOCATOR_BUFFERQUEUE will fail.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLEffectSendItf [see section 8.14]
This interface controls a player’s direct path and effect send levels.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.
SLMuteSoloItf [see section 8.28]

This interface exposes controls for selecting which of the player’s channels are heard and silenced.

PROFILE NOTES
This interface is mandated only in the Game profile and only where the data source is not a Java Tone Sequence.

SLMetaDataExtractionItf [see section 8.22]

This interface exposes controls for metadata extraction. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

SLMetaDataTraversalItf [see section 8.23]

This interface exposes controls for metadata traversal. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Music and Game profiles.

SLPrefetchStatusItf [see section 8.34]

This interface controls the prefetch state of the audio player.

SLRatePitchItf [see section 8.36]

The interface controls the rate and pitch in the audio player. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile and only where the data source is not a Java Tone Sequence.

SLSeekItf [see section 8.38]

This interface controls the position of the playback head and any looping of playback. Note that an attempt to instantiate SLSLSeekItf on an Audio Player whose data source is a buffer queue will fail.

PROFILE NOTES
The SetLoop is mandated for end-to-end looping in the phone profile and mandated for looping over an arbitrary loop region in the Music and Game profiles.
SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.

PROFILE NOTES
The EnableStereoPosition(), IsEnabledStereoPosition(), SetStereoPosition() and GetStereoPosition() methods are mandated only in the Music and Game profiles.

Applicable Optional Interfaces

SL3DMacroscopicItf [see section 8.5]

This interface exposes controls for setting the size (physical dimensions) of the player (3D sound source).

SLBassBoostItf [see section 8.11]

This interface controls a player-specific bass boost effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLDynamicSourcemItf [see section 8.15]

This interface enables changing the data source of the player post-creation.

SLEnvironmentalReverbItf [see section 8.19]

This interface controls a player-specific reverb effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLEqualizerItf [see section 8.20]

This interface controls a player-specific equalizer effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPitchItf [see section 8.31]

This interface controls the pitch shifting without changing the playback rate. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPresetReverbItf [see section 8.35]

This interface controls a player-specific reverb effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPlaybackRateItf [see section 8.33]

This interface exposes playback rate related controls. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.
SLVirtualizerItf [see section 8.41]

This interface exposes controls over a player-specific virtualization effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.
7.3 Audio Recorder

Description

The audio recorder media object records the piece of content to the destination specified by the data sink capturing it from the input specified by the data source and performing any specified encoding or processing.

See section B.1.2 for an example using this object.

PROFILE NOTES

This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces [see section 3.1.6] to the object.

This interface is an implicit interface on this object.

SLRecordItf [see section 8.37]

This interface controls the recording state of the audio player.

This interface is an implicit interface on this object.

SLAudioEncoderItf [see section 8.8]

This interface exposes audio encoder functionality.

Applicable Optional Interfaces

SLBassBoostItf [see section 8.11]

This interface controls the bass boost effect of the recorder. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLDynamicSourceItf [see section 8.15]

This interface enables changing the data source of the recorder post-creation.
SLEqualizerItf [see section 8.20]

This interface controls the equalizer effect of the recorder. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.

SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.
7.4 Engine Object

Description

This object type is the entry point of the API. An implementation shall enable creation of at least one such object, but attempting to create more instances (either by a single application or by several different applications) may fail.

The engine object supports creation of all the API’s objects via its `SLEngineItf` interface, and querying of the implementation’s capabilities via its `SLEngineCapabilitiesItf` interface.

See Appendix B: and Appendix C: for examples using this object.

Creation

An engine object is created using the global function `slCreateEngine()` [see section 6.1].

Mandated Interfaces

`SLObjectItf` [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

`SLDynamicInterfaceManagementItf` [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

`SLEngineItf` [see section 8.17]

This interface exposes methods for creation of all the API’s objects.

This interface is an implicit interface on this object.

`SLEngineCapabilitiesItf` [see section 8.18]

This interface enables querying current implementation capabilities.

This interface is an implicit interface on this object.

`SLThreadSyncItf` [see section 8.39]

This interface enables synchronization of API callback and client application contexts.

This interface is an implicit interface on this object.
SLAudioIODeviceCapabilitiesItf [see section 8.7]
   This interface exposes methods for querying available audio device capabilities.
   This interface is an implicit interface on this object.

SLAudioDecoderCapabilitiesItf [see section 8.7]
   This interface exposes methods for querying audio decoder capabilities.

SLAudioEncoderCapabilitiesItf [see section 8.9]
   This interface exposes methods for querying audio encoder capabilities.

SL3DCommitItf [see section 8.1]
   This interface exposes the global 3D commit control for all 3D parameters within an engine.

PROFILE NOTES
   This interface is mandated only in the Game profile.

Applicable Optional Interfaces

SLDeviceVolumeItf [see section 8.13]
   This interface controls audio input and output device-specific volumes.
7.5 LED Array I/O Device

Description

The LED array I/O device object encapsulates and controls a set of LEDs. Its functionality covers setting LED color, activating and deactivating LEDs.

PROFILE NOTES
This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]
This interface exposes basic object functionality.
This interface is an implicit interface on this object.

SLLEDArrayItf [see section 8.21]
This interface exposes all LED capabilities for a LED array IODEvice.
This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]
This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.
This interface is an implicit interface on this object.
7.6 Listener Object

Description

The listener object is an abstract object that represents a listener to any sound sources positioned in 3D space. The listener does not have a data source or data sink and subsequently has no content associated directly with it.

An application can optionally create one or more listener objects. Non-3D sound sources are heard independent of the existence or non-existence of any listener. For 3D sound sources to be heard, the application must create at least one listener.

The listener typically has the same position and orientation as a camera in a 3D graphics scene.

Some implementations may support the creation of multiple listeners. The behavior in such cases is undefined.

See section B.5 and C.4 for examples using this object.

PROFILE NOTES
Creation of objects of this type is mandated only in the Game profile.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

SL3DDopplerItf [see section 8.2]

This interface exposes controls for the Doppler and velocity of the listener. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.
SL3DLocationIf [see section 8.4]

This interface exposes controls for positioning and orienting the listener.

PROFILE NOTES

This interface is mandated only in the Game profile.
7.7 Metadata Extractor Object

Description

This object can be used for reading metadata without allocating resources for media playback. Using this object is recommended particularly when the application is interested only in presenting metadata without playing the content and when it wants to present metadata of multiple files. The latter is particularly interesting for generation of playlists for presentation purposes because an audio player would unnecessarily allocate playback resources. Furthermore, players cannot change their data source dynamically; therefore, for metadata extraction from multiple files, the application needs to create and destroy player objects many times, which is both inefficient, and may result in fragmentation of the heap.

PROFILE NOTES

Creation of objects of this type is mandated in Music and Game profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.
This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.
This interface is an implicit interface on this object.

SLDynamicSourceItf [see section 8.15]

This interface exposes controls for changing the data source during the lifetime of the object, to be able to read metadata from multiple files without creating a new object for every single file.
This interface is an implicit interface on this object.

SLMetaDataExtractionItf [see section 8.22]

This interface exposes controls for metadata extraction.
This interface is an implicit interface on this object.

SLMetaDataTraversalItf [see section 8.23]

This interface exposes controls for metadata traversal.
This interface is an implicit interface on this object.
7.8 MIDI Player Object

Description

The MIDI Player media object is used for all rendering of MIDI data. This includes both MIDI-based content files and MIDI-based wavetable instrument files. Further, individual MIDI messages not encapsulated within content files may be sent to a MIDI Player object via the optional MIDI Messages interface. Like the Audio Player media object, data sources for a MIDI Player generally include files and buffer queues, and the primary data sinks are audio output devices. In addition, an optional data source (a Mobile DLS instrument bank file) and two additional optional data sinks (LED array and vibra I/O device) are also available.

See sections B.3, C.3 and C.4 for examples using this object.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation of objects of this type is mandated only in the Phone and Game profiles.</td>
</tr>
</tbody>
</table>

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

SLPlayItf [see section 8.32]

This interface controls the playback state of the MIDI player. However, the play state does not affect controlling the MIDI Player with real-time MIDI messages via SLMIDIMessageItf; therefore, it is not necessary to use SLPlayItf if only real-time messages are used to control the MIDI player (with or without a soundbank source).

This interface is an implicit interface on this object.

SL3DDopplerItf [see section 8.2]

This interface exposes Doppler and velocity controls. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>This interface is mandated only in the Game profile.</td>
</tr>
</tbody>
</table>
SL3DGroupingItf [see section 8.3]

This interface exposes controls for adding and removing a player to and from a 3D group.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DLocationItf [see section 8.4]

This interface exposes controls for changing a player’s location in 3D space.

PROFILE NOTES
This interface is mandated only in the Game profile.

SL3DSourceltf [see section 8.6]

This interface exposes player-specific 3D controls.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLBufferQueueItf [see section 8.12]

This interface enables feeding data to the player using buffers. Note that an attempt to instantiate an SLBufferQueueItf on a player whose data source is not of type SL_DATALOCATOR_MIDIBUFFERQUEUE will fail.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLEffectSendItf [see section 8.14]

This interface controls a player’s direct path and effect send levels.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLMuteSoloItf [see section 8.28]

This interface exposes controls for selecting which of the player’s channels are heard and silenced.

PROFILE NOTES
This interface is mandated only in the Game profile.

SLMetaDataExtractionItf [see section 8.22]

This interface exposes controls for metadata extraction. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

PROFILE NOTES
This interface is mandated only in the Game profile.
<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
<th>Profile Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLMetaDataTraversalItf [see section 8.23]</td>
<td>This interface exposes controls for metadata traversal. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.</td>
<td>This interface is mandated only in the Game profile.</td>
</tr>
<tr>
<td>SLMIDIMessageItf [see section 8.24]</td>
<td>The SLMIDIMessageItf interface exposes methods to send messages to a MIDI-based player and establish callbacks to get MIDI information in runtime.</td>
<td>This interface is mandated only in the Phone and Game profiles.</td>
</tr>
<tr>
<td>SLMIDITimeItf [see section 8.27]</td>
<td>The SLMIDITimeItf interface exposes methods to determine duration, to set and get position, and to set and get loop points in MIDI ticks.</td>
<td>This interface is mandated only in the Phone and Game profiles. The SetLoopPoints() and GetLoopPoints() methods are mandated only in the Game profile.</td>
</tr>
<tr>
<td>SLMIDITempoItf [see section 8.26]</td>
<td>The SLMIDITempoItf interface exposes methods to set and get information about a MIDI-based player’s tempo.</td>
<td>This interface is mandated only in the Phone and Game profiles.</td>
</tr>
<tr>
<td>SLMIDIMuteSoloItf [see section 8.25]</td>
<td>The SLMIDIMuteSoloItf interface exposes methods to mute and solo MIDI channels and tracks, and to get the number of tracks.</td>
<td>This interface is mandated only in the Game profiles.</td>
</tr>
<tr>
<td>SLPrefetchStatusItf [see section 8.34]</td>
<td>This interface controls the prefetch state of the MIDI player. Note that an attempt to instantiate SLPrefetchStatusItf on an MIDI player whose data source is a buffer queue will fail.</td>
<td>This interface is mandated only in the Phone and Game profiles.</td>
</tr>
</tbody>
</table>
SLSeekItf [see section 8.38]

This interface controls the position of the playback head and any looping of playback. Note that an attempt to instantiate an SLSeekItf on an Audio Player whose data source is a buffer queue will fail.

PROFILE NOTES
The SetLoop is mandated for end-to-end looping in the phone profile and mandated for looping over an arbitrary loop region in the Music and Game profiles.

SLVolumeItf [see section 8.43]

This interface exposes volume-related controls.

PROFILE NOTES
The EnableStereoPosition(), IsEnabledStereoPosition(), SetStereoPosition() and GetStereoPosition() methods are mandated only in the Music and Game profile.

Applicable Optional Interfaces

SL3DMacroscopicItf [see section 8.5]

This interface exposes controls for setting the size (physical dimensions) of the player (3D sound source).

SLBassBoostItf [see section 8.11]

This interface controls a player-specific bass boost effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLDynamicSourceItf [see section 8.15]

This interface enables changing the data source of the player post-creation.

SLEnvironmentalReverbItf [see section 8.19]

This interface controls a player-specific reverb effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLEqualizerItf [see section 8.20]

This interface controls a player-specific equalizer effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPitchItf [see section 8.31]

This interface control the pitch shifting without changing the playback rate. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.
SLPresetReverbItf [see section 8.35]
This interface controls a player-specific reverb effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLPlaybackRateItf [see section 8.33]
This interface exposes playback rate related controls. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVirtualizerItf [see section 8.41]
This interface exposes controls over a player-specific virtualization effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVisualizationItf [see section 8.42]
This interface provides data for visualization purposes.
7.9 Output Mix

Description

The output mix object represents a set of audio output devices to which one audio output stream is sent. The application retrieves an output mix object from the engine and may specify that output mix as the sink for a media object. The engine must support at least one output mix, though it may support more. The API does not provide a direct audio output IO-device as a sink for media objects.

An output mix is a logical object; it does not (necessarily) represent a physical mix. Thus the actual implementation of the mixing defined logically by the mix objects and their association with media objects is an implementation detail. The output mix does not represent the system’s main mix. Furthermore, a mix object represents the application’s contribution to the output; the implementation may mix this contribution with output from other sources.

The engine populates the output mix with the default set of audio output devices. The application may request rerouting of that mix via calls to add and remove devices, but whether those requests are fulfilled is entirely the prerogative of the implementation. Furthermore, the implementation may perform its own rerouting of the output mix. In this case, the implementation makes the application aware of changes to the output mix via a notification.

Manipulation of the output mixes leverages the use of device IDs to specify the device(s) operated on. The engine includes a special ID, called the default device ID, which represents a set of one or more devices to which the implementation deems audio output should go by default. Although the application may use the default device ID when manipulating an output mix, only the implementation may alter the physical devices this ID represents. Furthermore, the implementation may change the mapping to physical devices dynamically.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.
This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.
This interface is an implicit interface on this object.
SLOutputMixItf [see section 8.30]
This interface exposes controls for querying the associated destination output devices.
This interface is an implicit interface on this object.

SLEnvironmentalReverbItf [see section 8.19]
This interface exposes controls for an environmental reverb. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>This interface is mandated only in the Game profile.</em></td>
</tr>
</tbody>
</table>

SLEqualizerItf [see section 8.20]
This interface exposes controls over an equalizer effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>This interface is mandated only in the Music and Game profiles.</em></td>
</tr>
</tbody>
</table>

SLPresetReverbItf [see section 8.35]
This interface exposes preset controllable reverb. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>This interface is mandated only in the Music profile.</em></td>
</tr>
</tbody>
</table>

SLVirtualizerItf [see section 8.41]
This interface exposes controls over a virtualization effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>This interface is mandated only in the Music and Game profiles.</em></td>
</tr>
</tbody>
</table>

SLVolumeItf [see section 8.43]
This interface exposes volume-related controls.

<table>
<thead>
<tr>
<th>PROFILE NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>The EnableStereoPosition(), IsEnabledStereoPosition(), SetStereoPosition() and GetStereoPosition() methods are mandated only in the Game and Music profiles.</em></td>
</tr>
</tbody>
</table>
Applicable Optional Interfaces

SLBassBoostItf [see section 8.11]

This interface controls the bass boost effect. This interface is a dynamic interface on this object. See section 3.1.6 for details on dynamic interfaces.

SLVisualizationItf [see section 8.42]

This interface provides data for visualization purposes.
7.10 Vibra I/O Device

Description

The Vibra I/O device object controls device vibration. Its functionality is limited to activate / deactivate the vibration function of the device, as well as setting its frequency and intensity, if supported.

PROFILE NOTES

This object is a standardized extension and consequently optional in all profiles.

Mandated Interfaces

SLObjectItf [see section 8.29]

This interface exposes basic object functionality.

This interface is an implicit interface on this object.

SLDynamicInterfaceManagementItf [see section 8.14]

This interface is used for adding dynamic interfaces (see section 3.1.6) to the object.

This interface is an implicit interface on this object.

SLVibraItf [see section 8.40]

This interface exposes all vibration functionality for a Vibra I/O Device.

This interface is an implicit interface on this object.
8 Interface Definitions

This section documents all the interfaces and methods in the API.

Almost all methods generate result codes, whether synchronously or asynchronously. Such methods must return either one of the explicit result codes listed in the method's documentation or one of the following result codes:

- SL_RESULT_RESOURCE_ERROR
- SL_RESULT_RESOURCE_LOST
- SL_RESULT_INTERNAL_ERROR
- SL_RESULT_UNKNOWN_ERROR
- SL_RESULT_OPERATION_ABORTED

For a full definition of these result codes see section 9.2.42.
8.1 SL3DCommitItf

Description

By default, all interfaces commit their settings to the signal processing layer immediately. This can result in unnecessary recalculations of 3D parameters and does not allow the developer to set up the 3D scene in one atomic operation. This interface exposes commit controls for controlling when changes to 3D interfaces are sent to the signal-processing layer.

This interface controls when changes to the following interfaces are sent to the signal processing system:

- SL3DLocationItf
- SL3DDopplerItf
- SL3DSourceItf
- SL3DMacroscopicItf

This affects all objects that can expose these interfaces, namely: listeners, players and 3D groups. All other interfaces, including the SL3DGroupingItf interface, are committed to the signal processing system immediately, regardless of this interface’s settings.

Applications are advised to defer 3D settings when possible, as this will reduce the amount of unnecessary internal parameter calculations.

When in deferred mode, all "get" methods for the 3D interfaces will return the latest "set" values, even if they have not yet been committed.

This interface is supported on the engine object [see section 7.4].

See section B.5.2 for an example using this interface.

Prototype

```c
extern const SLInterfaceID SL_IID_3DCOMMIT;

struct SL3DCommitItf;
typedef const struct SL3DCommitItf_* const * SL3DCommitItf;

struct SL3DCommitItf_ {
 SLresult (*Commit) (
 SL3DCommitItf self
);
};
```
Interface ID

3564ad80-dd0f-11db-9e19-0002a5d5c51b

Defaults

Commit mode: Immediate (not deferred).

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Pre-conditions</th>
<th>Parameters</th>
<th>Return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commit</td>
<td>Commits all changes to all 3D interfaces, except 3DGrouping.</td>
<td>None</td>
<td>self [in]</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS</td>
</tr>
</tbody>
</table>

Comments

It is legal to call this method when the commit mode is immediate (that is, not deferred); it will have no effect.
### SetDeferred

```
SLresult (*SetDeferred) (
 SL3DCommitItf self,
 SLboolean deferred
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables or disables deferred committing of 3D parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>deferred</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td>Comments</td>
<td>Parameters are not automatically committed when transferring from deferred to immediate mode. Developers should call Commit() before returning to immediate mode to ensure no parameter changes are lost.</td>
</tr>
</tbody>
</table>
8.2 SL3DDopplerItf

Description

This interface controls the Doppler of a listener, player, or 3D group. If this interface is exposed on a 3D group, the methods control the 3D characteristics of all the players in the 3D group.

The following restrictions must be adhered to when exposing this interface on a player object:

- This interface can be exposed on a player only if the SL3DLocationItf interface is exposed on the same player. This interface can be exposed on a player at creation as long as the SL3DLocationItf is also exposed at creation.

Parameter changes made using this interface may be deferred using the SL3DCommitItf interface [see section 8.1].

If the Doppler interface is exposed on a player or 3D Group (3D source), the players involved will have the Doppler effect applied (unless the Doppler factor is zero), regardless of whether the listener has exposed the Doppler interface. If the Doppler interface is not exposed on a 3D source, the 3D source will not have the Doppler effect applied to it, regardless of whether the listener has exposed the Doppler interface.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section 7.8], 3D Group [see section 7.8] and Listener [see section 7.6] objects.

See sections B.5.2 and C.4 for examples using this interface.

Doppler

When a 3D source is moving at a speed relative to the listener, its perceived pitch changes. This change is called Doppler shift and is most noticeable if a 3D source moves quickly close to the listener. To calculate the amount of pitch shift in a real world situation, it is only necessary to know relative velocities of the source and listener, in addition to knowledge of the physical medium through which the sound waves travel, which is usually air. These parameters can in turn be calculated from knowledge of the spatial positions of the sound source and listener as they vary with time.

However, OpenSL ES does not calculate Doppler shifts from the 3D source and listener locations because it is usually more convenient for the developer to directly specify the velocities of the 3D source and listener. This allows the developer more flexibility, as these velocities can be decoupled from the actual physical velocities of the 3D source and listener. If desired, the developer can easily calculate the 3D source and listener velocities that correspond directly to their physical movement, thus linking the two again.
It is good practice to use Doppler only on selected 3D sources on which the effect is going to be most effective or noticeable, since Doppler processing can use additional memory and processing power. For example, Doppler works well for speeding bullets but not for walking characters. Developers can conserve resources by exposing this interface only on 3D source’s that require the Doppler effect.

Doppler can be simulated as a change in pitch. The following is the recommended algorithm for calculating a pitch multiplier for a given Doppler:

\[
\begin{align*}
  p &= \begin{cases} 
  \frac{(\mathbf{l}_p)}{|\mathbf{l}_p|} & \text{if player is head relative} \\
  \frac{(\mathbf{l}_p - \mathbf{l}_i)}{|\mathbf{l}_p - \mathbf{l}_i|} & \text{otherwise}
  \end{cases} \\
  d &= \begin{cases} 
  1 & \text{if } D = 0 \\
  \max\left(0, \frac{c + D \times s_i}{c + D \times s_p}\right) & \text{otherwise}
  \end{cases} \\
  s_i &= \mathbf{v}_i \cdot d \\
  s_p &= \mathbf{v}_p \cdot d \\
  D &= \frac{D_i \times D_p}{10^6}
\end{align*}
\]

where:

- \( p \) is the pitch multiplier due to Doppler.
- \( A \cdot B \) is the dot product of the vectors \( A \) and \( B \).
- \( \mathbf{v}_i \) is the listener's velocity vector.
- \( \mathbf{v}_p \) is the 3D source's velocity vector.
- \( \mathbf{l}_i \) is the listener's location vector.
- \( \mathbf{l}_p \) is the 3D source's location vector.
- \( D_i \) is the listener's Doppler factor.
- \( D_p \) is the 3D source's Doppler factor.
- \( c \) is the speed of sound (about 340000 mm/s).
The listener’s velocity and Doppler factor are used for calculating the 3D source’s Doppler. If the SL3DDopplerItf interface is not exposed on the listener, the default listener velocity and Doppler factor values are used in the calculations.

**Prototype**

```c
extern const SLInterfaceID SL_IID_3DDOPPLER;

struct SL3DDopplerItf_;
typedef const struct SL3DDopplerItf_ * const * SL3DDopplerItf;

struct SL3DDopplerItf_ {
 SLresult (*SetVelocityCartesian) (SL3DDopplerItf self, const SLVec3D *pVelocity);
 SLresult (*SetVelocitySpherical) (SL3DDopplerItf self, SLmillidegree azimuth, SLmillidegree elevation, SLmillimeter speed);
 SLresult (*GetVelocityCartesian) (SL3DDopplerItf self, SLVec3D *pVelocity);
 SLresult (*SetDopplerFactor) (SL3DDopplerItf self, SLpermille dopplerFactor);
 SLresult (*GetDopplerFactor) (SL3DDopplerItf self, SLpermille *pDopplerFactor);
};
```

**Interface ID**

b45c9a80-ddd2-11db-b028-0002a5d5c51b

**Defaults**

Velocity (x, y, z): (0 mm/s, 0 mm/s, 0 mm/s)

Doppler factor: 1000 ‰
## SetVelocityCartesian

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Pre-conditions</th>
<th>Parameters</th>
<th>Return value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetVelocityCartesian</td>
<td>Sets the object's velocity.</td>
<td>None</td>
<td>self [in] Interface self-reference.</td>
<td>SL_RESULT_SUCCESS, SL_RESULT_PARAMETER_INVALID</td>
<td>The velocity is only used in the Doppler calculations. It does not effect the object’s location.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pVelocity [in] Pointer to a vector containing the velocity in right-handed Cartesian coordinates. The velocities are expressed in millimeters per second.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```c
SLresult (*SetVelocityCartesian) (SL3DDopplerItf self, const SLVec3D *pVelocity);
```
### SetVelocitySpherical

```c
SLresult (*SetVelocitySpherical) (
 SL3DDopplerItf self,
 SLmillidegree azimuth,
 SLmillidegree elevation,
 SLmillimeter speed
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the object’s velocity using spherical coordinates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>[in]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td></td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td>azimuth</td>
<td>[in]</td>
<td>The azimuth angle in millidegrees. The valid range is [-360000, 360000].</td>
</tr>
<tr>
<td>elevation</td>
<td>[in]</td>
<td>The elevation angle in millidegrees. The valid range is [-90000, 90000].</td>
</tr>
<tr>
<td>speed</td>
<td>[in]</td>
<td>The speed in millimeters per second. The valid range is [0, SL_MILLIMETER_MAX].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
</tbody>
</table>

| Comments     | The velocity is only used in the Doppler calculations. It does not effect the object’s location. See the Location section in documentation for SL3DLocationItf [see section 8.4] for a definition of azimuth and elevation. |
### GetVelocityCartesian

```c
SLresult (*GetVelocityCartesian) (SL3DDopplerItf self,
 SLVec3D *pVelocity);
```

**Description**
Gets the object’s velocity.

**Pre-conditions**
None

**Parameters**
- `pVelocity` [out] Pointer to a vector to receive the velocity in right-handed Cartesian coordinates. This must be non-NULL.

**Return value**
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

**Comments**
The accuracy of the output velocity is limited: one or more of the components (x, y or z) can differ by (a) up to 4% of the largest (absolute) vector component, or (b) 1 mm from the accurate value, which ever is greater.
## SetDopplerFactor

```c
SLresult (*SetDopplerFactor) (
 SL3DDopplerItf self,
 SLpermille dopplerFactor
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the object’s Doppler factor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>dopplerFactor</td>
<td>[in] Doppler factor in permille. A value of zero disables the Doppler effect. The valid range is [0, 10000].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>A 3D source’s Doppler factor is multiplied by the listener’s Doppler factor to determine the final Doppler factor applied to the sound source. Consequently, if the listener’s Doppler factor is zero, all Doppler effects are disabled. If the SL3DDopplerItf interface is not exposed on the listener, the listener’s default Doppler factor (1000 ‰) is used in this calculation. If a Doppler effect is never required on the 3D source, the developer is advised not to expose this interface, as this will save resources.</td>
</tr>
</tbody>
</table>

## GetDopplerFactor

```c
SLresult (*GetDopplerFactor) (
 SL3DDopplerItf self,
 SLpermille *pDopplerFactor
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the object’s Doppler factor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pDopplerFactor</td>
<td>[out] Pointer to a location to receive the current Doppler factor. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
8.3 SL3DGroupingItf

Description

This interface sets the player’s 3D group. A player can be added to a 3D group, removed from one, and moved between 3D groups. When this interface is exposed on a player, it must be added to a 3D group (using Set3DGroup()) in order for the player to be heard.

The following restrictions must be adhered to when exposing this interface on a player:

- This interface can only be exposed when creating a player object. It cannot be dynamically added using the SLDynamicInterfaceManagementItf interface [see section 8.14].
- This interface is mutually exclusive with the SL3DLocationItf interface; it is not possible to expose this interface at the same time as the SL3DLocationItf interface.

Exposing this interface on a player renders the player in 3D.

This interface is supported on the Audio Player [see section 7.2] and MIDI Player [see section 7.8] objects.

See section C.4 for an example using this interface.

Prototype

extern const SLInterfaceID SL_IID_3DGROUPING;

struct SL3DGroupingItf;
typedef const struct SL3DGroupingItf * const * SL3DGroupingItf;

struct SL3DGroupingItf_ {
  SLresult (*Set3DGroup) (SL3DGroupingItf self, SLObjectItf group);
  SLresult (*Get3DGroup) (SL3DGroupingItf self, SLObjectItf *pGroup);
};

Interface ID

ebe844e0-ddd2-11db-b510-0002a5d5c51b
### Defaults

3D group: `NULL` (that is, no 3D group)

### Methods

#### Set3DGroup

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the 3D group for the player, removing the player from any previous 3D group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The 3D group being set must be in the realized state.</td>
</tr>
<tr>
<td></td>
<td>group [in] The 3D group to add the player to. If <code>group</code> is equal to <code>NULL</code>, the player is no longer in any 3D group. The 3D group must be in the realized state.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PRECONDITIONS_VIOLATED</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_MEMORY_FAILURE</code></td>
</tr>
<tr>
<td>Comments</td>
<td>When a player is no longer a member of a 3D group, it has no 3D information, and so is not heard until the player is added back to 3D group.</td>
</tr>
</tbody>
</table>
### Get3DGroup

```c
SLresult (*Get3DGroup) (
 SL3DGroupingItf self,
 SLObjectItf *pGroup
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the 3D group for the player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>pGroup</td>
<td>[out] Pointer to location to receive the 3D group of which the player is a member. If the player is not a member of 3D group, this will return NULL. This must be non-NULL.</td>
</tr>
<tr>
<td><strong>Return value</strong></td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
</tbody>
</table>

**Comments**

None
8.4 SL3DLocationItf

Description

This interface controls the location and orientation in 3D space of a listener, player, or 3D group. If this interface is exposed on a 3D group, the methods control the 3D characteristics of all the players in the 3D group.

The following restrictions must be adhered to when exposing this interface on a player object:

- This interface can be exposed only when creating a player object. It cannot be dynamically added using the SLDynamicInterfaceManagementItf interface [see section 8.14].
- This interface is mutually exclusive with the SL3DGroupingItf interface; it is not possible to expose this interface at the same time as the SL3DGroupingItf interface.

Exposing this interface on a player object causes the player to be rendered in 3D.

Parameter changes made using this interface may be deferred using the SL3DCommitItf interface [see section 8.1].

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section 7.8], 3D Group [see section 7.8] and Listener [see section 7.6] objects.

See section B.5 and C.4 for examples using this interface.

Location

The location of an object can be specified using either Cartesian or spherical coordinates. All coordinates are specified using either world coordinates or listener-relative coordinates (if the 3D source is in head relative mode [see section 8.6]).

A location is specified in Cartesian coordinates using a vector that specifies the distance x, y, and z-axis position, as shown in the following left diagram. A location is specified using spherical coordinates by specifying the distance from the reference point, and the azimuth and elevation angles, as shown in the following right diagram.
The conversion from spherical coordinates to Cartesian coordinates is defined by the following equations:

\[
\begin{align*}
  x &= \text{distance} \times \cos(\text{elevation}) \times \sin(\text{azimuth}) \\
  y &= \text{distance} \times \sin(\text{elevation}) \\
  z &= \text{distance} \times \cos(\text{elevation}) \times -\cos(\text{azimuth})
\end{align*}
\]

In addition to the above mentioned mechanisms, which are setter methods for specifying the location relative to the origin (or to the listener when in the head relative mode, see `SetHeadRelative()` method in section 8.6), there is a third mechanism, namely the Move method, to specify the location relative to the previous location using Cartesian coordinates.

**Orientation**

Many sound sources are omni-directional, that is, they radiate sound equally in all directions, so that the energy they emit is the same regardless of their orientation. However, other sound sources radiate more energy in one direction than others. OpenSL ES allows the application to model this effect by specifying the orientation of the 3D sources and listener, as described here, and a 3D source’s sound cone [see section 8.6].

The orientation of an object can be specified using three alternative methods:

- `SetOrientationAngles()`, for setting it using three rotation angles relative to the default orientation.
- `SetOrientationVectors()`, for setting it using orientation vectors relative to the default orientation.
- `Rotate()` for setting it using a rotation axis and a rotation angle relative to the current orientation.

### Orientation Angles

An orientation is expressed using rotation angles by specifying the heading, pitch and roll rotations about the coordinate axes of the object. The new orientation is specified relative to the initial orientation. Positive rotation directions around the coordinate axes are counterclockwise when looking towards the origin from a positive coordinate position on each axis. The initial orientation is facing out towards the negative z-axis of the world, up-direction being towards the positive y-axis of the world. The heading specifies the rotation about the object’s y-axis, the pitch specifies the heading about the object’s x-axis, and the roll specifies the rotation about the object’s z-axis. The rotation is applied in the order: heading, pitch, roll. Since the rotation angles are defined to be about the axes of the object, not of the world, the consequence is that the heading rotation affects both the pitch and roll, and the pitch rotation affects the roll.

![Figure 25: Orientation angles](image)

In the case of the listener, orientation angles map nicely to the physical movements of the head: heading => turning around, pitch => nodding, and roll => tilting the head left and right.
The conversion (without scaling) from heading, pitch and roll to Front and Up vectors is defined by the following equations:

\[
\begin{align*}
    x_{\text{FRONT}} &= -\sin(\text{heading}) \times \cos(\text{pitch}) \\
    y_{\text{FRONT}} &= \sin(\text{pitch}) \\
    z_{\text{FRONT}} &= -\cos(\text{heading}) \times \cos(\text{pitch}) \\
    x_{\text{UP}} &= -\sin(\text{roll}) \times \cos(\text{heading}) + \cos(\text{roll}) \times \sin(\text{pitch}) \times \sin(\text{heading}) \\
    y_{\text{UP}} &= \cos(\text{pitch}) \times \cos(\text{roll}) \\
    z_{\text{UP}} &= \sin(\text{roll}) \times \sin(\text{heading}) + \cos(\text{roll}) \times \cos(\text{heading}) \times \sin(\text{pitch})
\end{align*}
\]

### Orientation Vectors

When specifying the orientation, we consider the following vectors:

- **Front**: this vector specifies the frontal direction of the object.
- **Up**: this vector specifies the upward direction of the object. The Up vector is perpendicular to the Front vector.
- **Above**: this vector specifies a direction above the object, on the plane defined by the Front and Up vectors.

These vectors are shown for the listener’s orientation in the diagram below.
The Right and Up vectors of the object are calculated by first calculating the Right vector as the cross product of the Front vector and the Above vector, and then the Up vector as a cross product of the Right and Front vectors.

The method SetOrientation() vector has Front and Above vectors as parameters, but GetOrientation() returns the Up vector. The benefit of using the Above vector instead of the Up vector in the setter is that the application does not need to calculate the Up vector. The difference between the Above and Up vectors is that the Up vector must have a 90 degree angle to the Front vector, but the Above vector does not need (but is allowed) to have it. For example, if the application never wants to roll the listener’s head and the listener is just turning around and maybe nodding a little, the application can use a constant Above vector (0, 1000, 0) and just calculate the Front vector.
Rotate Method

The Rotate method can be used in order to turn the object from its current orientation by defining the rotation axis and the amount of rotation using a theta angle. This rotation follows the right-hand rule, so if the rotation axis points toward the user, the rotation will be counterclockwise. The following diagram illustrates altering the existing orientation using the Rotate method.

Figure 28: Rotate method
Prototype

extern const SLInterfaceID SL_IID_3DLOCATION;

struct SL3DLocationItf_
typedef const struct SL3DLocationItf_ * const * SL3DLocationItf;

struct SL3DLocationItf_ { 
  SLresult (*SetLocationCartesian) ( 
    SL3DLocationItf self, 
    const SLVec3D *pLocation
  );
  SLresult (*SetLocationSpherical) ( 
    SL3DLocationItf self, 
    SLmillidegree azimuth, 
    SLmillidegree elevation, 
    SLmillimeter distance
  );
  SLresult (*Move) ( 
    SL3DLocationItf self, 
    const SLVec3D *pMovement
  );
  SLresult (*GetLocationCartesian) ( 
    SL3DLocationItf self, 
    SLVec3D *pLocation
  );
  SLresult (*SetOrientationVectors) ( 
    SL3DLocationItf self, 
    const SLVec3D *pFront, 
    const SLVec3D *pAbove
  );
  SLresult (*SetOrientationAngles) ( 
    SL3DLocationItf self, 
    SLmillidegree heading, 
    SLmillidegree pitch, 
    SLmillidegree roll
  );
  SLresult (*Rotate) ( 
    SL3DLocationItf self, 
    SLmillidegree theta, 
    const SLVec3D *pAxis
  );
  SLresult (*GetOrientationVectors) ( 
    SL3DLocationItf self, 
    SLVec3D *pFront, 
    SLVec3D *pUp
  );
};
Interface ID

2b878020-ddd3-11db-8a01-0002a5d5c51b

Defaults

Location (x, y, z): (0 mm, 0 mm, 0 mm)

Front orientation (x, y, z): (0, 0, -1000)

Up orientation (x, y, z): (0, 1000, 0)

That is, the initial position is the origin and the initial orientation is towards the negative Z-axis, the up-direction being towards the positive Y-axis. In rotation angles this equals: heading = 0 degrees; pitch = 0 degrees and roll = 0 degrees.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetLocationCartesian</td>
<td>Sets the object’s 3D location using Cartesian coordinates.</td>
</tr>
</tbody>
</table>

### SetLocationCartesian

**Description**
Sets the object’s 3D location using Cartesian coordinates.

**Pre-conditions**
None

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLocation</td>
<td>[in]</td>
<td>Pointer to a vector containing the 3D location in right-handed Cartesian coordinates.</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

**Comments**
None
**SetLocationSpherical**

```
SLresult (*SetLocationSpherical) (
 SL3DLocationItf self,
 SLmillidegree azimuth,
 SLmillidegree elevation,
 SLmillimeter distance
);
```

**Description**
Sets the object’s 3D location using spherical coordinates.

**Pre-conditions**
None

**Parameters**
- `azimuth` [in] The azimuth angle in millidegrees. The valid range is [-360000, 360000].
- `elevation` [in] The elevation angle in millidegrees. The valid range is [-90000, 90000].
- `distance` [in] The distance in millimeters from the origin. The valid range is [0, SL_MILLIMETER_MAX].

**Return value**
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

**Comments**
None

**Move**

```
SLresult (*Move) (
 SL3DLocationItf self,
 const SLVec3D *pMovement
);
```

**Description**
Moves the object `pMovement` amount relative to the current location.

**Pre-conditions**
None

**Parameters**
- `pMovement` [in] Pointer to a vector containing the transform in right-handed Cartesian coordinates.

**Return value**
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

**Comments**
If the move would cause the object to be located outside of the SLInt32 space the behavior of this method is undefined.
### GetLocationCartesian

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the object’s 3D location expressed in Cartesian coordinates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><strong>pLocation</strong> [out] Pointer to a vector to receive the 3D location in right-handed Cartesian coordinates. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The accuracy of the output location is limited: one or more of the components (x, y or z) can differ by (a) up to 4% of the largest (absolute) vector component, or (b) 1 mm from the accurate value, which ever is greater.</td>
</tr>
</tbody>
</table>
### SetOrientationVectors

```c
SLresult (*SetOrientationVectors) (
 SL3DLocationItf self,
 const SLVec3D *pFront,
 const SLVec3D *pAbove
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the object’s 3D orientation using vectors.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td><img src="#" alt="Parameter Table" /></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>- SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The specified vectors need not be unit vectors (for example, normalized): they can have any non-zero magnitude. Please note that there are three alternative methods for setting the orientation: SetOrientationAngles for setting it using angles relative to the default orientation, SetOrientationVectors for setting it using orientation vectors relative to the default orientation and Rotate for setting it using the given rotation axis and angle relative to the current orientation. If any argument is close to the zero vector; or if the specified vectors are close to parallel the SL_RESULT_PARAMETER_INVALID error code will be returned and the orientation of the object will remain unchanged.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="#" alt="Parameter Table" /></td>
<td>self [in] Interface self-reference.</td>
</tr>
<tr>
<td><img src="#" alt="Parameter Table" /></td>
<td>pFront [in] Pointer to a vector specifying the Front vector of the object in the world coordinate system.</td>
</tr>
<tr>
<td><img src="#" alt="Parameter Table" /></td>
<td>pAbove [in] Pointer to a vector specifying the Above vector mentioned above.</td>
</tr>
</tbody>
</table>
### SetOrientationAngles

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the object’s 3D orientation using angles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>heading [in] The angle of rotation around the y-axis in millidegrees. The valid range is [-360000, 360000].</td>
</tr>
<tr>
<td></td>
<td>pitch [in] The angle of rotation around the x-axis in millidegrees. The valid range is [-90000, 90000].</td>
</tr>
<tr>
<td></td>
<td>roll [in] The angle of rotation around the z-axis in millidegrees. The valid range is [-360000, 360000].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
### Rotate

```c
SLresult (*Rotate) (
 SL3DLocationItf self,
 SLmillidegree theta,
 const SLVec3D *pAxis
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Rotates the object’s orientation. The rotation is theta millidegrees relative to the current orientation. This rotation follows the right-hand rule, so if the rotation axis (pAxis) points toward the user, the rotation will be counterclockwise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>theta</td>
<td>[in] The amount of rotation in millidegrees.</td>
</tr>
<tr>
<td>pAxis</td>
<td>[in] The rotation axis. This must not be a zero vector, but the length does not matter.</td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:
SL_RESULT_SUCCESS
SL_RESULT_PARAMETER_INVALID |
| Comments | None |
## GetOrientationVectors

```c
SLresult (*GetOrientationVectors) (
 SL3DLocationItf self,
 SLVec3D *pFront,
 SLVec3D *pUp
);
```

### Description

Gets the object’s 3D orientation as vectors.

### Pre-conditions

None

### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>[in]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td></td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td>pFront</td>
<td>[out]</td>
<td>Pointer to a vector to receive the current front orientation. This must be non-NULL. The vector will have a normalized length of approximately 1000 mm.</td>
</tr>
<tr>
<td>pUp</td>
<td>[out]</td>
<td>Pointer to a vector to receive the current up orientation. This must be non-NULL. The vector will have a normalized length of approximately 1000 mm.</td>
</tr>
</tbody>
</table>

### Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

### Comments

The accuracy of the output orientations is limited: one or more of the components (x, y or z) can differ by (a) up to 4% of the largest (absolute) vector component, or (b) 1 mm from the accurate value, which ever is greater.
8.5 SL3DMacroscopicItf

Description

This interface is for controlling the size of a 3D sound source. By default, a sound source has a size of zero – that is, it is a point. This interface allows the dimensions (width, height, and depth) of a sound source to be specified so that it no longer behaves as a point source. This is useful for relatively big sound sources like waterfalls. The orientation of the macroscopic volume also can be specified. See the Orientation section in 8.4 for detailed explanation of different methods for setting the orientation.

The following diagram illustrates how the dimensions map to the orientation vectors of the 3D source.

![Diagram of 3D macroscopic sound source dimensions and orientation vectors]

Figure 29: Dimensions-orientation vectors

It is good practice to use the macroscopic effect only on selected, relatively big 3D sources, on which the effect will be most effective or noticeable, since macroscopic effect processing can use additional memory and processing power. Developers can conserve resources by exposing this interface only on 3D sources that require the macroscopic effect.

Please note that you can use the SL3DLocationItf interface to locate the 3D sound source; the location defined by 3DLocationItf is the location of the center of the macroscopic sound source.

Please note that you can use the SL3DSourceItf interface to specify the distance attenuation model of the 3D sound source. The exact distance used for distance attenuation calculation in the case of a macroscopic source is implementation-dependent and the implementation can take into account the macroscopicity near the sound source. The application should specify the distance attenuation as it would in the case where the
source is a point source. Relatively far from the macroscopic sound source, the distance attenuation behaves similarly to non-macroscopic sources.

Please note that you can use the SL3DSourceItf interface to specify the directivity model of the 3D sound source. Relatively far from the macroscopic sound source, the directivity-based attenuation behaves similarly to non-macroscopic sources. The exact directivity-based attenuation near the macroscopic sound source is implementation-dependent and the implementation can take into account the macroscopicity when the sound source is near the listener. The application should specify the directivity as it would in cases where the source is a point source.

This interface can be exposed on the 3DGroup object, if macroscopicity is supported.

The following restriction must be adhered to when exposing this interface on a player:

- This interface can be exposed on a player only if the SL3DLocationItf interface is exposed on the same player. This interface can be exposed on a player at creation as long as the SL3DLocationItf is also exposed at creation.

Parameter changes made using this interface may be deferred using the SL3DCommitItf interface [see section 8.1].

Prototype

```c
extern const SLInterfaceID SL_IID_3DMACROSCOPIC;

struct SL3DMacroscopicItf_;
typedef const struct SL3DMacroscopicItf_ * const * SL3DMacroscopicItf;

struct SL3DMacroscopicItf_ {
 SLresult (*SetSize) (
 SL3DMacroscopicItf self,
 SLmillimeter width,
 SLmillimeter height,
 SLmillimeter depth
);
 SLresult (*GetSize) (
 SL3DMacroscopicItf self,
 SLmillimeter *pWidth,
 SLmillimeter *pHeight,
 SLmillimeter *pDepth
);
 SLresult (*SetOrientationAngles) (
 SL3DMacroscopicItf self,
 SLmillidegree heading,
 SLmillidegree pitch,
 SLmillidegree roll
);
```
SLresult (*SetOrientationVectors) (  
    SL3DMacroscopicItf self,  
    const SLVec3D *pFront,  
    const SLVec3D *pAbove  
);  
SLresult (*Rotate) (  
    SL3DMacroscopicItf self,  
    SLmillidegree theta,  
    const SLVec3D *pAxis  
);  
SLresult (*GetOrientationVectors) (  
    SL3DMacroscopicItf self,  
    SLVec3D *pFront,  
    SLVec3D *pUp  
);  
};

Interface ID

5089aec0-ddd3-11db-9ad3-0002a5d5c51b

Defaults

Size (width, height, depth): (0 mm, 0 mm, 0 mm) – a point

Front orientation (x, y, z): (0, 0, -1000) – looking forward

Up orientation (x, y, z): (0, 1000, 0) - looking up

That is, the initial position is the origin and the initial orientation is towards the negative Z-axis, up-direction being towards the positive Y-axis. In rotation angles, this equals: heading = 0 degrees; pitch = 0 degrees and roll = 0 degrees.
## Methods

### SetSize

```c
SLresult (*SetSize)(
 SL3DMacroscopicItf self,
 SLmillimeter width,
 SLmillimeter height,
 SLmillimeter depth
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the size of the 3D sound source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>[in] The “width” of the sound source in its transformed X (or “right”) dimension, in millimeters. The valid range in [0, SL_MILLIMETER_MAX].</td>
</tr>
<tr>
<td>height</td>
<td>[in] The “height” of the sound source in its transformed Y (or “up”) dimension, in millimeters. The valid range in [0, SL_MILLIMETER_MAX].</td>
</tr>
<tr>
<td>depth</td>
<td>[in] The “thickness” or “depth” of the sound source in its transformed Z (or “front”) dimension, in millimeters. The valid range in [0, SL_MILLIMETER_MAX].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
### GetSize

```c
SLresult (*GetSize)(
 SL3DMacroscopicIf self,
 SLmillimeter *pWidth,
 SLmillimeter *pHeight,
 SLmillimeter *pDepth
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the size of the 3D sound source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>pWidth</td>
<td>[out] The “width” of the sound source in its transformed X (or “right”) dimension, in millimeters. This parameter must be non-NULL.</td>
</tr>
<tr>
<td>pHeight</td>
<td>[out] The “height” of the sound source in its transformed Y (or up) dimension, in millimeters. This parameter must be non-NULL.</td>
</tr>
<tr>
<td>pDepth</td>
<td>[out] The “thickness” or “depth” of the sound source in its transformed Z (or front) dimension, in millimeters. This parameter must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetOrientationAngles

```c
SLresult (*SetOrientationAngles)(
 SL3DMacroscopicItf self,
 SLmillidegree heading,
 SLmillidegree pitch,
 SLmillidegree roll
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the 3D orientation of the macroscopic volume using angles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>heading [in] The rotation around the Y-axis of the object, in millidegrees. The valid range is [-360000, 360000].</td>
</tr>
<tr>
<td></td>
<td>pitch [in] The rotation around the X-axis of the object, in millidegrees. The valid range is [-90000, 90000].</td>
</tr>
<tr>
<td></td>
<td>roll [in] The rotation around the Z-axis of the object, in millidegrees. The valid range is [-360000, 360000].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Please note that there are three alternative methods for setting the orientation: setOrientationAngles for setting it using angles relative to the default orientation, setOrientationVectors for setting it using orientation vectors relative to the default orientation, and Rotate for setting it using the given rotation axis and angle relative to the current orientation.</td>
</tr>
</tbody>
</table>
### SetOrientationVectors

```
SLresult (*SetOrientationVectors)(
 SL3DMacroscopicItf self,
 const SLVec3D *pFront,
 const SLVec3D *pAbove
);
```

**Description**
Sets the 3D orientation of the macroscopic volume using vectors. The specified vectors need not be unit vectors (that is, normalized): they can have any non-zero magnitude.

**Pre-conditions**
None

**Parameters**
- **pFront** [in] Pointer to a vector specifying the front vector of the object in the world coordinate system.
- **pAbove** [in] Pointer to a vector specifying the “above” vector mentioned above.

**Return value**
The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

**Comments**
Please note that there are three alternative methods for setting the orientation: `SetOrientationAngles` for setting it using angles relative to the default orientation, `SetOrientationVectors` for setting it using orientation vectors relative to the default orientation and `Rotate` for setting it using the given rotation axis and angle relative to the current orientation.

If any argument is close to the zero vector; or if the specified vectors are close to parallel the `SL_RESULT_PARAMETER_INVALID` error code will be returned and the orientation of the object will remain unchanged.
## Rotate

```c
SLresult (*Rotate) (
 SL3DMacrosopicItf self,
 SLmillidegree theta,
 const SLVec3D *pAxis
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Rotates the macroscopic volume’s orientation. The rotation is theta millidegrees relative to the current orientation. This rotation follows the right-hand rule, so if the rotation axis (<code>pAxis</code>) points toward the user, the rotation will be counterclockwise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>
**theta** [in] The amount of rotation in millidegrees.  
**pAxis** [in] The rotation axis. This must not be a zero vector, but the length does not matter. |
| Return value | The return value can be one of the following:  
SL_RESULT_SUCCESS  
SL_RESULT_PARAMETER_INVALID |
| Comments | Please note that there are three alternative methods for setting the orientation: `setOrientationAngles` for setting it using angles relative to the default orientation, `setOrientationVectors` for setting it using orientation vectors relative to the default orientation and `Rotate` for setting it using the given rotation axis and angle relative to the current orientation. |
### GetOrientationVectors

```c
SLresult (*GetOrientationVectors)(
 struct SL3DMacroscopicItf self,
 SLVec3D *pFront,
 SLVec3D *pUp
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the 3D orientation of the macroscopic volume.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pFront</td>
<td>[out] Pointer to a vector to receive the current front orientation. The vector will have a normalized length of approximately 1000 mm. This must be non-NULL.</td>
</tr>
<tr>
<td>pUp</td>
<td>[out] Pointer to a vector to receive the current up orientation. The vector will have a normalized length of approximately 1000 mm. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The accuracy of the output orientations is limited: one or more of the components (x, y or z) can differ by (a) up to 4% of the largest (absolute) vector component, or (b) 1 mm from the accurate value, which ever is greater.</td>
</tr>
</tbody>
</table>
8.6 SL3DSourceItf

Description

This interface controls 3D parameters that are unique to 3D sources. If this interface is exposed on a 3D group, the methods control the 3D characteristics of all the players in the 3D group.

The following restriction must be adhered to when exposing this interface on a player object:

- This interface can be exposed on a player only if the SL3DLocationItf interface is exposed on the same player. This interface can be exposed on a player at creation as long as the SL3DLocationItf is also exposed at creation.

Parameter changes made using this interface may be deferred using the SL3DCommitItf interface [see section 8.1].

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section 7.8] and 3D Group [see section 7.8] objects.

See section B.5.2 for an example using this interface.

Head Relative

In most cases, the listeners and 3D sources move independently of each other. However, in some cases a sound source may track the listener’s position. Consider, for example, a first person game where the listener and camera view are identical. As the listener moves, any footsteps the listener makes are likely to track the listener at a fixed position.

OpenSL ES provides support for this behavior by allowing the developer to register a 3D source as head relative. When a 3D source is in head relative mode, its location, velocity, and orientation are specified relative to the listener’s location, velocity, and orientation. The consequence of this is that as the listener moves, the 3D source will stay at a constant distance from the listener when the 3D source’s location is not changed.

Distance Rolloff

The level of sound source heard by a listener decreases as a sound source moves further away. This is called distance rolloff. OpenSL ES provides several methods to control a 3D source’s rolloff characteristics.

The starting point for the OpenSL ES distance rolloff model is a minimum distance that must be specified for each 3D source (or left at the default of one meter). This is the
distance at which the gain due to rolloff is constant at unity (that is, the 3D source is neither attenuated nor amplified). The minimum distance is used for representing the size (in audio-centric terms) of the sound source the 3D source represents. The minimum distance is required because it is standard practice of sound designers to normalize the audio data. Without any adjustment of overall 3D source’s minimum distance, a sound sample of an insect would sound as loud as that of a train engine at a given distance.

A developer can also control the maximum distance of a 3D source. This is the distance at which the 3D source’s distance rolloff gain is clamped or muted altogether, depending on the mute at maximum distance setting.

The minimum and maximum distances control the distances at which attenuation is applied, but they do not control the rate of attenuation. For this the developer can set the distance rolloff model and its rolloff factor.

OpenSL ES supports two different distance rolloff models: an exponential rolloff model, in which the level of sound decays at an exponential rate due to distance, and a linear rolloff model, in which the sound decays at a linear rate due to distance.

The exponential distance rolloff model is defined as follows:

$$G_d = \begin{cases} 
1 & \text{if } d < d_{\text{min}} \\
0 & \text{if } d \geq d_{\text{max}} \text{ and } \text{rolloffMaxDistanceMute} = \text{true} \\
(d_{\text{min}} / d_{\text{max}})^{\text{rolloffFactor}} & \text{if } d \geq d_{\text{max}} \text{ and } \text{rolloffMaxDistanceMute} = \text{false} \\
(d_{\text{min}} / d)^{\text{rolloffFactor}} & \text{otherwise}
\end{cases}$$

where:

- $G_d$ is the linear gain due to distance rolloff at distance $d$.
- $d$ is the distance between the 3D source and the listener. This is calculated as the length of the vector that is formed by subtracting the listener’s location vector from the 3D source’s location vector (or when in head relative mode, simply the length of the 3D source’s location vector). If the SL3DLocationItf interface is not exposed on the listener, the default listener location is used in this calculation.
- $d_{\text{min}}$ is the minimum distance in millimeters; the distance from the listener within which the 3D source gain is constant. This distance is set in SetRolloffDistances().
- $d_{\text{max}}$ is the maximum distance in millimeters; the distance from the listener at which the 3D source gain is no longer attenuated due to distance. This distance is set in SetRolloffDistances().
- **rolloffFactor** is the rate at which the gain attenuates due to distance. This is set using a permille scale in `SetRolloffFactor()`. 1000 ‰ is equal to a rolloff factor of one.

- **rolloffMaxDistanceMute** controls whether the 3D source is muted when its distance from the listener is beyond the maximum distance. This is set using `SetRolloffMaxDistanceMute()`.

The exponential distance model closely matches the distance effect in the real world. The **rolloff factor** controls the rate of decay. The graph below shows the effect of the rolloff factor at 0.5 (500 ‰), one (1000 ‰), the default rolloff factor, and two (2000 ‰). In this example, the minimum distance is 1000 mm, the maximum distance is 12000 mm and the 3D source is configured to mute at the maximum distance.

![Figure 30: Rolloff factor effect](image-url)
OpenSL ES also supports a linear distance model. This does not accurately model real-world distance rolloff, but can be useful for some games. The linear distance rolloff model is defined as follows:

$$G_d = \begin{cases} 
1 & \text{if } d < d_{\text{min}} \\
0 & \text{if } d \geq d_{\text{max}} \text{ and } \text{rolloffMaxDistanceMute} = \text{true} \\
\max(0, 1 - \text{rolloffFactor}) & \text{if } d \geq d_{\text{max}} \text{ and } \text{rolloffMaxDistanceMute} = \text{false} \\
\max\left(0, 1 - \left(\text{rolloffFactor} \times \frac{d - d_{\text{min}}}{d_{\text{max}} - d_{\text{min}}}\right)\right) & \text{otherwise}
\end{cases}$$

where:

- $G_d$ is the linear gain due to distance rolloff at distance $d$.
- $d$ is the distance between the 3D source and the listener. This is calculated as the length of the vector that is formed by subtracting the listener’s location vector from the 3D source’s location vector (or when in head relative mode, simply the length of the 3D source’s location vector). If the $\text{SL3DLocationItf}$ interface is not exposed on the listener, the default listener location is used in this calculation.
- $d_{\text{min}}$ is the minimum distance in millimeters; the distance from the listener within which the 3D source gain is constant. This distance is set in $\text{SetRolloffDistances()}$.
- $d_{\text{max}}$ is the maximum distance in millimeters; the distance from the listener at which the 3D source gain is no longer attenuated due to distance. This distance is set in $\text{SetRolloffDistances()}$.
- $\text{rolloffFactor}$ is the rate at which the gain attenuates due to distance. This is set using a permille scale in $\text{SetRolloffFactor()}$. 1000 ‰ is equal to a rolloff factor of one.
- $\text{rolloffMaxDistanceMute}$ controls whether the 3D source is muted when its distance from the listener is beyond the maximum distance. This is set using $\text{SetRolloffMaxDistanceMute()}$. 

The graph below shows the effect of different rolloff factors when using the linear rolloff model. In this example, the minimum distance is 1000 mm, the maximum distance is 12000 mm and the 3D source is configured to mute at the maximum distance.

![Image of linear rolloff graph]

**Figure 31: Linear rolloff**

**Room Rolloff**

The equations above show how to calculate a 3D source’s direct path distance rolloff. These same equations are also used for calculating a 3D source’s reverb path distance rolloff, but using the *room rolloff factor* (set using `SetRoomRolloffFactor()` instead of the standard rolloff factor. This allows an application to control the rolloff rate for a sound source’s contribution to a reverb environment separately from its direct path contribution.
The minimum and maximum rolloff distances are the same for both the direct path and reverb path.

**Sound Cones**

Many sound sources are omnidirectional, that is, they radiate sound equally in all directions so that they sound exactly the same no matter what their orientation. An example would be an exploding bomb. Other sound sources are more accurately represented by a 3D source that radiates more sound in one direction than in others (as, for example, a human voice), which projects more forwards than in other directions.

Real life radiation patterns for directional sources are complex, but a good effect can be created using the concept of the “sound cone”, the axis of which defines the direction of strongest radiation, as shown in the diagram below.

![Sound Cone Diagram](image)

**Figure 32: Sound cone**

The *cone inner* and *cone outer angles* define the inner and outer sound cones, respectively. Within the inner cone, the sound source’s level is constant, with no attenuation applied. Outside the outer cone, the sound source’s level has an attenuation equal to the *cone outer level*. Between the inner and outer cones, perceived sound decreases linearly as the angle of the listener from the axis of orientation of the sound source increases. If SL3DLocationItf is not exposed on the listener, the default listener orientation is assumed for the listener.

If the cone outer angle is not much larger than the cone inner angle, there will be a relatively sudden change in volume as the listener moves through these angles. This would be appropriate for some kind of weapon that emits a narrow beam, for example. A useful
optical analogy is a lighthouse, which emits a beam of light. The wider the beam, the larger the cone inner angle should be. The sharper the focus of the edge of the beam, the closer the cone outer angle should be to the cone inner angle.

One way to think about cone outer level is to think of the directional and omnidirectional components of the sound source. If a cone outer level close to 0 mB is specified, most of the 3D source’s power will be omnidirectional. Conversely, if a value close to silence is specified, most of the power will be directional.

Prototype

```c
extern const SLInterfaceID SL_IID_3DSOURCE;

struct SL3DSourceItf_;
typedef const struct SL3DSourceItf_ * const * SL3DSourceItf;

struct SL3DSourceItf_ {
 SLresult (*SetHeadRelative) (
 SL3DSourceItf self,
 SLboolean headRelative
);
 SLresult (*GetHeadRelative) (
 SL3DSourceItf self,
 SLboolean *pHeadRelative
);
 SLresult (*SetRolloffDistances) (
 SL3DSourceItf self,
 SLmillimeter minDistance,
 SLmillimeter maxDistance
);
 SLresult (*GetRolloffDistances) (
 SL3DSourceItf self,
 SLmillimeter *pMinDistance,
 SLmillimeter *pMaxDistance
);
 SLresult (*SetRolloffMaxDistanceMute) (
 SL3DSourceItf self,
 SLboolean mute
);
 SLresult (*GetRolloffMaxDistanceMute) (
 SL3DSourceItf self,
 SLboolean *pMute
);
 SLresult (*SetRolloffFactor) (
 SL3DSourceItf self,
 SLpermille rolloffFactor
);
 SLresult (*GetRolloffFactor) (
 SL3DSourceItf self,
 SLpermille *pRolloffFactor
);
};
```
SLresult (*SetRoomRolloffFactor) (  
    SL3DSourceItf self,  
    SLpermille roomRolloffFactor  
);  
SLresult (*GetRoomRolloffFactor) (  
    SL3DSourceItf self,  
    SLpermille *pRoomRolloffFactor  
);  
SLresult (*SetRolloffModel) (  
    SL3DSourceItf self,  
    SLuint8 model  
);  
SLresult (*GetRolloffModel) (  
    SL3DSourceItf self,  
    SLuint8 *pModel  
);  
SLresult (*SetCone) (  
    SL3DSourceItf self,  
    SLmillidegree innerAngle,  
    SLmillidegree outerAngle,  
    SLmillibel outerLevel  
);  
SLresult (*GetCone) (  
    SL3DSourceItf self,  
    SLmillidegree *pInnerAngle,  
    SLmillidegree *pOuterAngle,  
    SLmillibel *pOuterLevel  
);  
}

### Interface ID

70bc7b00-ddd3-11db-a873-0002a5d5c51b

### Defaults

**Head Relative**: SL_BOOLEAN_FALSE  
**Max Distance Mute**: SL_BOOLEAN_FALSE  
**Max Distance**: SL_MILLIMETER_MAX  
**Min Distance**: 1000 mm  
**Cone Angles (inner, outer)**: (360000 mdeg, 360000 mdeg)  
**Cone Outer Level**: 0 mB  
**Rolloff Factor**: 1000 ‰
Room rolloff factor: 0 %

Distance Model: SL_ROLLOFFMODEL_EXPONENTIAL

Methods

<table>
<thead>
<tr>
<th>SetHeadRelative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLresult (*SetHeadRelative) (</td>
</tr>
<tr>
<td>SL3DSourceItf self,</td>
</tr>
<tr>
<td>SLboolean headRelative</td>
</tr>
<tr>
<td>);</td>
</tr>
</tbody>
</table>

Description	Sets whether the 3D source should be treated as head relative.
Pre-conditions	None
Parameters	
headRelative	[in] If true, the 3D source is considered head relative: the properties of the 3D source’s location, velocity, and orientation are treated as relative to the listener rather than the origin. If false, these properties of the 3D source are treated as relative to the origin.
Return value	The return value can be one of the following:
SL_RESULT_SUCCESS	
Comments	When headRelative is equal to true, sound sources track the listener’s position (such as footsteps).
### GetHeadRelative

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the 3D source’s head relative state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pHeadRelative</td>
<td>[out] Pointer to a location to receive a Boolean signifying whether or not the 3D source is in head relative mode. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
### SetRolloffDistances

```c
SLresult (*SetRolloffDistances) (
 SL3DSourceItf self,
 SLmillimeter minDistance,
 SLmillimeter maxDistance
);
```

**Description**
Sets the minimum and maximum distances of the 3D source.
The minimum distance is the distance from the listener within which the 3D source gain is constant.
The maximum distance is the distance from the listener at which the 3D source gain is no longer attenuated due to distance.

**Pre-conditions**
minDistance must be <= maxDistance.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minDistance</td>
<td>[in]</td>
<td>The minimum distance of the 3D source. The valid range is (0, SL_MILLIMETER_MAX].</td>
</tr>
<tr>
<td>maxDistance</td>
<td>[in]</td>
<td>The distance in millimeters at which the 3D source’s gain is no longer attenuated due to distance. The value SL_MILLIMETER_MAX is used where the 3D source continues to attenuate, whatever the distance. The valid range is [minDistance, SL_MILLIMETER_MAX].</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PRECONDITIONS_VIOLATED
- SL_RESULT_PARAMETER_INVALID

**Comments**
None
### GetRolloffDistances

```c
SLresult (*GetRolloffDistances) (
 struct SL3DSourceItf self,
 SLmillimeter *pMinDistance,
 SLmillimeter *pMaxDistance
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the 3D source’s minimum and maximum distances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMinDistance</td>
<td>[out] Pointer to a location to receive the minimum distance for the 3D source. This must be non-NULL.</td>
</tr>
<tr>
<td>pMaxDistance</td>
<td>[out] Pointer to a location to receive the maximum distance for the 3D source. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

### SetRolloffMaxDistanceMute

```c
SLresult (*SetRolloffMaxDistanceMute) (
 SL3DSourceItf self,
 SLboolean mute
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets whether the 3D source is muted when beyond the maximum rolloff distance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>mute</td>
<td>[in] If true, the 3D source is muted when it is more than the maximum distance away from the listener; otherwise, it is not muted.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
**GetRolloffMaxDistanceMute**

```c
SLresult (*GetRolloffMaxDistanceMute) (
 struct SL3DSourceItf self,
 SLboolean *pMute
);
```

**Description**
Gets whether 3D source is muted when beyond the maximum rolloff distance.

**Pre-conditions**
None

**Parameters**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pMute</td>
<td>[out]</td>
<td>Pointer to a location to receive a Boolean signifying whether the 3D source is muted beyond the maximum distance. This must be non-NULL.</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

**Comments**
None

---

**SetRolloffFactor**

```c
SLresult (*SetRolloffFactor) (
 SL3DSourceItf self,
 SLpermille rolloffFactor
);
```

**Description**
Sets the distance rolloff factor for the 3D source.

**Pre-conditions**
None

**Parameters**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rolloffFactor</td>
<td>[in]</td>
<td>The rolloff factor in permille. The valid range is [0, 10000].</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

**Comments**
None
### GetRolloffFactor

| SLresult (*GetRolloffFactor) (  
| struct SL3DSourceItf self,  
| SLpermille *pRolloffFactor  
| );  
|  
| **Description** | Gets the distance rolloff factor for the 3D source. |
| **Pre-conditions** | None |
| **Parameters** |  
pRolloffFactor [out]	Pointer to a location to receive the rolloff factor. This must be non-NULL.
**Return value**	The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID
**Comments**	None

### SetRoomRolloffFactor

| SLresult (*SetRoomRolloffFactor) (  
| SL3DSourceItf self,  
| SLpermille roomRolloffFactor  
| );  
|  
| **Description** | Sets the room rolloff factor for the 3D source. |
| **Pre-conditions** | None |
| **Parameters** |  
roomRolloffFactor [in]	The room rolloff factor in permille. The valid range is [0, 10000].
**Return value**	The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID
**Comments**	None
### GetRoomRolloffFactor

```
SLresult (*GetRoomRolloffFactor) (
 struct SL3DSoundItf self,
 SLpermille *pRoomRolloffFactor
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the distance room rolloff factor for the 3D source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pRoomRolloffFactor [out] Pointer to a location to receive the room rolloff factor. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

### SetRolloffModel

```
SLresult (*SetRolloffModel) (
 SL3DSoundItf self,
 SLuint8 model
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the distance rolloff model used for calculating decay due to distance for the 3D source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>model [in] The distance models. The standard distance models supported by all implementations are: SL_ROLLOFFMODEL_LINEAR, SL_ROLLOFFMODEL_EXPONENTIAL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
### GetRolloffModel

```c
SLresult (*GetRolloffModel) (
 struct SL3DSourceItf self,
 SLuint8 *pModel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the distance rolloff model for the 3D source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pModel</td>
<td>[out] Pointer to location to receive the distance model. The standard distance models supported by all implementations are: SL_ROLLOFFMODEL_LINEAR, SL_ROLLOFFMODEL_EXPONENTIAL. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
### SetCone

```c
SLresult (*SetCone) (
 SL3DSourceItf self,
 SLmillidegree innerAngle,
 SLmillidegree outerAngle,
 SLmillibel outerLevel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the sound cones for the 3D source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>innerAngle must be &lt;= outerAngle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td>innerAngle</td>
<td>Inner cone angle in millidegrees. Its value should be in the range [0, 360000].</td>
</tr>
<tr>
<td>outerAngle</td>
<td>Outer cone angle in millidegrees. Its value should be in the range [0, 360000].</td>
</tr>
<tr>
<td>outerLevel</td>
<td>Outer cone volume in millibels. Its value should be in the range [SL_MILLBEL_MIN, 0]. The special value SL_MILLBEL_MIN indicates that the cone outer volume should be silent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
<th>None</th>
</tr>
</thead>
</table>
### GetCone

```c
SLresult (*GetCone) (
 struct SL3DSourceItf self,
 SLmillidegree *pInnerAngle,
 SLmillidegree *pOuterAngle,
 SLmillibel *pOuterLevel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the sound cones for the 3D source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

#### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td>pInnerAngle</td>
<td>Pointer to location to receive the inner cone angle. This must be non-NULL.</td>
</tr>
<tr>
<td>pOuterAngle</td>
<td>Pointer to location to receive the outer cone angle. This must be non-NULL.</td>
</tr>
<tr>
<td>pOuterLevel</td>
<td>Pointer to a location to receive the cone outer level in millibels. This must be non-NULL.</td>
</tr>
</tbody>
</table>

#### Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

#### Comments

None
8.7 SLAudioDecoderCapabilitiesItf

Description

This interface provides methods for querying the audio decoding capabilities of the audio engine.

This interface provides a means of enumerating all audio decoders available on an engine where a decoderId represents each decoder. It also provides a means to query the capabilities of each decoder. A given decoder may support several profile/mode pairs each with their own capabilities (such as maximum sample rate or bit rate) appropriate to that profile and mode pair. Therefore, this interface represents the capabilities of a particular decoder as a list of capability entries queriable by decoderID and capability entry index.

The set of audio decoders supported by the engine does not change during the lifetime of the engine though dynamic resource constraints may limit actual availability when an audio decoder is requested.

This interface is supported on engine objects [see section 7.4].

Prototype

```c
extern const SLInterfaceID SL_IID_AUDIODECODERCAPABILITIES;

struct SLAudioDecoderCapabilitiesItf_;
typedef const struct SLAudioDecoderCapabilitiesItf_ * const * SLAudioDecoderCapabilitiesItf;

struct SLAudioDecoderCapabilitiesItf_ {
 SLresult (*GetAudioDecoders) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 * pNumDecoders ,
 SLuint32 *pDecoderIds
);
 SLresult (*GetAudioDecoderCapabilities) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 decoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pDescriptor
);
};
```

Interface ID

3fe5a3a0-fcc6-11db-94ac-0002a5d5c51b
### Defaults

Not applicable.

### Methods

#### GetAudioDecoders

```c
SLresult (*GetAudioDecoders) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 *pNumDecoders,
 SLuint32 *pDecoderIds
);
```

**Description**
Retrieves the available audio decoders.

**Pre-conditions**
None

**Post-conditions**
None

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNumDecoders</td>
<td>[in/out]</td>
<td>If pDecoderIds is NULL, pNumDecoders returns the number of decoders available. Returns 0 if there are no decoders. If pDecodersIds is non-NULL, as an input pNumDecoders specifies the size of the pDecoderIds array and as an output it specifies the number of decoder IDs available within the pDecoderIds array.</td>
</tr>
<tr>
<td>pDecoderIds</td>
<td>[out] Array of audio decoders provided by the engine. Refer to SL_AUDIOCODEC defines [see section 9.2.1].</td>
<td></td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

**Comments**
None

**See also**
GetAudioDecoderCapabilities()
## GetAudioDecoderCapabilities

```c
SLresult (*GetAudioDecoderCapabilities) (
 SLAudioDecoderCapabilitiesItf self,
 SLuint32 decoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pDescriptor
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries for the audio decoder capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Post-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>decoderId</td>
<td>[in] Identifies the supported audio decoder. Refer to SL AUDIOCODEC defines [see section 9.2.1].</td>
</tr>
<tr>
<td>pIndex</td>
<td>[in/out] If pCapabilities is NULL, pIndex returns the number of capabilities. Returns 0 if there are no capabilities. If pCapabilities is non-NULL, pIndex is an incrementing value used for enumerating capabilities. Supported index range is 0 to N-1, where N is the number of capabilities of the decoder.</td>
</tr>
<tr>
<td>pDescriptor</td>
<td>[out] Pointer to structure defining the capabilities of the audio decoder.</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

**Comments**
None

**See also**
- GetAudioDecoders()
8.8 SLAudioEncoderItf

Description

This interface is used for setting the parameters to be used by an audio encoder. It is realized on a media object with audio encoding capabilities, such as an audio recorder. Once the supported codecs have been enumerated using SLAudioEncoderCapabilitiesItf on the engine [see section 8.9], the encoding settings can be set using this interface.

This interface is supported on Audio Recorder objects [see section 7.3].

Prototype

extern const SLInterfaceID SL_IID_AUDIOENCODER;

struct SLAudioEncoderItf_;
typedef const struct SLAudioEncoderItf_ * const * SLAudioEncoderItf;

struct SLAudioEncoderItf_ {
    SLresult (*SetEncoderSettings) (SLAudioEncoderItf self, SLAudioEncoderSettings *pSettings);
    SLresult (*GetEncoderSettings) (SLAudioEncoderItf self, SLAudioEncoderSettings *pSettings);
};

Interface ID

d0897d20-f774-11db-b80d-0002a5d5c51b

Defaults

No default settings are mandated.
Methods

SetEncoderSettings

```c
SLresult (*SetEncoderSettings) (
 SLAudioEncoderItf self,
 SLAudioEncoderSettings *pSettings
);
```

**Description**
Set audio encoder settings.

**Pre-conditions**
None

**Parameters**
- `pSettings` [in] Specifies the audio encoder settings to be applied [see section 9.1.2].

**Return value**
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_FEATURE_UNSUPPORTED`

**Comments**
None

**See also**
GetEncoderSettings()

GetEncoderSettings

```c
SLresult (*GetEncoderSettings) (
 SLAudioEncoderItf self,
 SLAudioEncoderSettings *pSettings
);
```

**Description**
Get audio encoder settings.

**Pre-conditions**
None

**Parameters**
- `pSettings` [out] Specifies a pointer to the structure that will return the audio encoder settings [see section 9.1.2].

**Return value**
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

**Comments**
None

**See also**
SetEncoderSettings()
8.9 SLAudioEncoderCapabilitiesItf

Description

This interface provides methods for querying the audio encoding capabilities of the audio engine.

This interface provides a means of enumerating all audio encoders available on an engine where an encoderId represents each encoder. It also provides a means to query the capabilities of each encoder. A given encoder may support several profile/mode pairs, each with their own capabilities (such as maximum sample rate or bit rate) appropriate to that profile and mode pair. Therefore, this interface represents the capabilities of a particular encoder as a list of capability entries queriable by encoderID and capability entry index.

The set of audio encoders supported by the engine does not change during the lifetime of the engine though dynamic resource constraints may limit actual availability when an audio encoder is requested.

This interface is supported on engine objects [see section 7.4].

Prototype

extern const SLInterfaceID SL_IID_AUDIOENCODERCAPABILITIES;

struct SLAudioEncoderCapabilitiesItf_;
typedef const struct SLAudioEncoderCapabilitiesItf_ *
  * const * SLAudioEncoderCapabilitiesItf;

struct SLAudioEncoderCapabilitiesItf_ {
  SLresult (*GetAudioEncoders) (
    SLAudioEncoderCapabilitiesItf self,
    SLuint32 *pNumEncoders,
    SLuint32 *pEncoderIds
  );
  SLresult (*GetAudioEncoderCapabilities) (
    SLAudioEncoderCapabilitiesItf self,
    SLuint32 encoderId,
    SLuint32 *pIndex,
    SLAudioCodecDescriptor *pDescriptor
  );
};

Interface ID

0f52a340-fcd1-11db-a993-0002a5d5c51b
Defaults

Not applicable.

Methods

### GetAudioEncoders

| SLresult (*GetAudioEncoders) ( |
| SLAudioEncoderCapabilitiesItf self, |
| SLuint32 * pNumEncoders, |
| SLuint32 *pEncoderIds |
| ); |

**Description**
Queries the supported audio encoders.

**Pre-conditions**
None

**Post-conditions**
None

**Parameters**
- **pNumEncoders**: [in/out] If pEncoderIds is NULL, pNumEncoders returns the number of encoders available. Returns 0 if there are no encoders. If pEncodersIds is non-NULL, as an input pNumEncoders specifies the size of the pEncoderIds array and as an output it specifies the number of encoder IDs available within the pEncoderIds array.
- **pEncoderIds**: [out] Array of audio encoders provided by the engine. Refer to SL_AUDIOCODEC defines [see section 9.2.1].

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

**Comments**
None

**See also**
GetAudioEncoderCapabilities ()
### GetAudioEncoderCapabilities

```c
SLresult (*GetAudioEncoderCapabilities) (
 SLAudioEncoderCapabilitiesItf self,
 SLuint32 encoderId,
 SLuint32 *pIndex,
 SLAudioCodecDescriptor *pCapabilities
)
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries for the audio encoder’s capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Post-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

#### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encoderId</td>
<td>[in]</td>
<td>Identifies the supported audio encoder. Refer to <code>SL_AUDIOCODEC</code> defines [see section 9.2.1].</td>
</tr>
<tr>
<td>pIndex</td>
<td>[in/out]</td>
<td>If <code>pCapabilities</code> is NULL, <code>pIndex</code> returns the number of capabilities. Returns 0 if there are no capabilities. If <code>pCapabilities</code> is non-NULL, <code>pIndex</code> is an incrementing value used for enumerating profiles. Supported index range is 0 to N-1, where N is the number of capabilities of the encoder.</td>
</tr>
<tr>
<td>pDescriptor</td>
<td>[out]</td>
<td>Pointer to structure containing the capabilities of the audio encoder [see section 9.1.1].</td>
</tr>
</tbody>
</table>

#### Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

#### Comments

None

#### See also

GetAudioDecoders()
8.10 SLAudioIODeviceCapabilitiesItf

Description

This interface is for enumerating the audio I/O devices on the platform and for querying the capabilities and characteristics of each available audio I/O device.

This interface is supported on the engine object [see section 7.4].

See Appendix C: for examples using this interface.

Prototype

    extern const SLInterfaceID SL_IID_AUDIOIODEVICECAPABILITIES;

    struct SLAudioIODeviceCapabilitiesItf_;
    typedef const struct SLAudioIODeviceCapabilitiesItf_ *
    * const * SLAudioIODeviceCapabilitiesItf;

    struct SLAudioIODeviceCapabilitiesItf_ {
        SLresult (*GetAvailableAudioInputs)(
            SLAudioIODeviceCapabilitiesItf self,
            SLint32 *pNumInputs,
            SLuint32 *pInputDeviceIDs
        );
        SLresult (*QueryAudioInputCapabilities)(
            SLAudioIODeviceCapabilitiesItf self,
            SLuint32 deviceID,
            SLAudioInputDescriptor *pDescriptor
        );
        SLresult (*RegisterAvailableAudioInputsChangedCallback) (
            SLAudioIODeviceCapabilitiesItf self,
            SLAvailableAudioInputsChangedCallback callback,
            void *pContext
        );
        SLresult (*GetAvailableAudioOutputs)(
            SLAudioIODeviceCapabilitiesItf self,
            SLint32 *pNumOutputs,
            SLuint32 *pOutputDeviceIDs
        );
        SLresult (*QueryAudioOutputCapabilities)(
            SLAudioIODeviceCapabilitiesItf self,
            SLuint32 deviceID,
            SLAudioOutputDescriptor *pDescriptor
        );
    };
SLresult (*RegisterAvailableAudioOutputsChangedCallback) (  
    SLAudioIODeviceCapabilitiesItf self,  
    slAvailableAudioOutputsChangedCallback callback,  
    void *pContext
);
SLresult (*RegisterDefaultDeviceIDMapChangedCallback) (  
    SLAudioIODeviceCapabilitiesItf self,  
    slDefaultDeviceIDMapChangedCallback callback,  
    void *pContext
);
SLresult (*GetAssociatedAudioInputs) (  
    SLAudioIODeviceCapabilitiesItf self,  
    SLuint32 deviceID,  
    SLint32 *pNumAudioInputs,  
    SLuint32 *pAudioInputDeviceIDs
);
SLresult (*GetAssociatedAudioOutputs) (  
    SLAudioIODeviceCapabilitiesItf self,  
    SLuint32 deviceID,  
    SLint32 *pNumAudioOutputs,  
    SLuint32 *pAudioOutputDeviceIDs
);
SLresult (*GetDefaultAudioDevices) (  
    SLAudioIODeviceCapabilitiesItf self,  
    SLuint32 defaultDeviceID,  
    SLint32 *pNumAudioDevices,  
    SLuint32 *pAudioDeviceIDs
);
SLresult (*QuerySampleFormatsSupported)(  
    SLAudioIODeviceCapabilitiesItf self,  
    SLuint32 deviceID,  
    SLmilliHertz samplingRate;,  
    SLint32 *pSampleFormats,  
    SLint32 *pNumOfSampleFormats
);

Interface ID

b2564dc0-ddd3-11db-bd62-0002a5d5c51b

Defaults

I/O device capabilities vary widely from system to system. Defaults are not applicable.
### Callbacks

#### slAvailableAudioInputsChangedCallback

```c
typedef void (SLAPIENTRY *slAvailableAudioInputsChangedCallback) (
 SLAudioIODeviceCapabilitiesItf caller,
 void *pContext,
 SLuint32 deviceID,
 SLint32 numInputs,
 SLboolean isNew
);
```

**Description**
This callback executes when the set of available audio input devices changes (as when a new Bluetooth headset is connected or a wired microphone is disconnected).

**Parameters**
- **caller** `[in]` The interface instantiation on which the callback was registered.
- **pContext** `[in]` User context data that is supplied when the callback method is registered.
- **deviceID** `[in]` ID of the audio input device that has changed (that is, was either removed or added).
- **numInputs** `[in]` Updated number of available audio input devices.
- **isNew** `[in]` Set to `SL_BOOLEAN_TRUE` if the change was an addition of a newly available audio input device; `SL_BOOLEAN_FALSE` if an existing audio input device is no longer available.

**Comments**
The callback does not provide additional detail about the audio input device that has changed. In the case of an addition, it is up to the application to use `QueryAudioInputCapabilities()` to determine the full characteristics of the newly available audio input device.

**See Also**
`QueryAudioInputCapabilities()`
### slAvailableAudioOutputsChangedCallback

```c
typedef void (SLAPIENTRY *slAvailableAudioOutputsChangedCallback) (
 SLAudioIODeviceCapabilitiesItf caller,
 void *pContext,
 SLuint32 deviceID,
 SLint32 numOutputs,
 SLboolean isNew
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>This callback executes when the set of available audio output devices changes (as when a new Bluetooth headset is connected or a wired headset is disconnected).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>caller [in] The interface instantiation on which the callback was registered.</td>
</tr>
<tr>
<td></td>
<td>pContext [in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td></td>
<td>deviceID [in] ID of the audio output device that has changed (that is, was either removed or added).</td>
</tr>
<tr>
<td></td>
<td>numOutputs [in] Updated number of available audio output devices.</td>
</tr>
<tr>
<td></td>
<td>isNew [in] Set to SL_BOOLEAN_TRUE if the change was an addition of a newly available audio output device; SL_BOOLEAN_FALSE if an existing audio output device is no longer available.</td>
</tr>
</tbody>
</table>

| Comments | The callback does not provide additional details about the audio output device that has changed. In the case of an addition, it is up to the application to use QueryAudioOutputCapabilities() to determine the full characteristics of the newly-available audio output device. |

| See Also | QueryAudioOutputCapabilities() |
**slDefaultDeviceIDMapChangedCallback**

```c
typedef void (SLAPIENTRY *slDefaultDeviceIDMapChangedCallback) (
 SLAudioIODeviceCapabilitiesItf caller,
 void *pContext,
 SLboolean isOutput,
 SLint32 numDevices
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>This callback executes when the set of audio output devices mapped to SL_DEFAULTDEVICEID_AUDIOINPUT or SL_DEFAULTDEVICEID_AUDIOOUTPUT changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>caller [in] The interface instantiation on which the callback was registered.</td>
</tr>
<tr>
<td></td>
<td>pContext [in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td></td>
<td>isOutput [in] If true, then devices mapped to SL_DEFAULTDEVICEID_AUDIOOUTPUT have changed, otherwise the devices mapped to SL_DEFAULTDEVICEID_AUDIOINPUT have changed.</td>
</tr>
<tr>
<td></td>
<td>numDevices [in] New number of physical audio output devices to which SL_DEFAULTDEVICEID_AUDIOOUTPUT or SL_DEFAULTDEVICEID_AUDIOINPUT is now mapped (depending on value of isOutput). Is always greater than or equal to 1.</td>
</tr>
</tbody>
</table>
| Comments    | The callback does not provide additional details about the audio devices now mapped to the default device ID. It is up to the application to retrieve the device IDs and to use the device IDs to query the capabilities of each device. 
numDevices is included in the callback for the benefit of those applications who may not wish to send/receive their audio stream to/from more than one device. Such applications can examine numDevices and opt to stop operation immediately if it is greater than 1, without needing to invoke other methods to get the new number of devices mapped to SL_DEFAULTDEVICEID_AUDIOOUTPUT or SL_DEFAULTDEVICEID_AUDIOINPUT. |
| See Also    | QueryAudioOutputCapabilities() |
## Methods

<table>
<thead>
<tr>
<th>GetAvailableAudioInputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLresult (*GetAvailableAudioInputs)(</td>
</tr>
<tr>
<td>SLAudioIODeviceCapabilitiesItf self,</td>
</tr>
<tr>
<td>SLint32 *pNumInputs,</td>
</tr>
<tr>
<td>SLuint32 *pInputDeviceIDs</td>
</tr>
<tr>
<td>);</td>
</tr>
</tbody>
</table>

### Description

Gets the number and IDs of audio input devices currently available.

### Pre-conditions

None

### Parameters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pNumInputs</td>
<td>[in/out]</td>
<td>As an input, specifies the length of the pInputDeviceIDs array (ignored if pInputDeviceIDs is NULL). As an output, specifies the number of audio input device IDs available in the system. Returns 0 if no audio input devices are available in the system.</td>
</tr>
<tr>
<td>pInputDeviceIDs</td>
<td>[out]</td>
<td>Array of audio input device IDs currently available in the system. This parameter is populated by the call with the array of input device IDs (provided that pNumInputs is equal to or greater than the number of actual input device IDs). If pNumInputs is less than the number of actual input device IDs, the error code SL_RESULT_BUFFER_INSUFFICIENT is returned.</td>
</tr>
</tbody>
</table>

### Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_BUFFER_INSUFFICIENT
- SL_RESULT_PARAMETER_INVALID

### Comments

Note that “available” implies those audio input devices that are active (that is, can accept input audio) and this number may be less than or equal to the total number of audio input devices in the system. For example, if a system has both an integrated microphone and a line-in jack, but the line-in jack is not connected to anything, the number of available audio inputs is only 1.

Device IDs should not be expected to be contiguous.

Device IDs are unique: the same device ID must not be used for different device types.

### See Also

- GetAvailableAudioOutputs()
### QueryAudioInputCapabilities

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the capabilities of the specified audio input device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>deviceID</td>
<td>[in] ID of the audio input device.</td>
</tr>
<tr>
<td>pDescriptor</td>
<td>[out] Structure defining the capabilities of the audio input device [see section 9.1.3].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_IO_ERROR</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See Also</td>
<td>QueryAudioOutputCapabilities(), QuerySampleFormatsSupported()</td>
</tr>
</tbody>
</table>
### RegisterAvailableAudioInputsChangedCallback

```c
SLresult (*RegisterAvailableAudioInputsChangedCallback)(
 SLAudioIODeviceCapabilitiesItf self,
 slAvailableAudioInputsChangedCallback callback,
 void *pContext
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or clears <code>slAvailableAudioInputsChangedCallback()</code>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>callback</code></td>
<td>[in] Address of the callback.</td>
</tr>
<tr>
<td><code>pContext</code></td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code>.</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code>.</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See Also</td>
<td><code>slAvailableAudioInputsChangedCallback()</code></td>
</tr>
</tbody>
</table>
GetAvailableAudioOutputs

```c
SLresult (*GetAvailableAudioOutputs)(
 SLAudioIODeviceCapabilitiesItf self,
 SLint32 *pNumOutputs,
 SLuint32 *pOutputDeviceIDs
);
```

**Description**
Gets the number and IDs of audio output devices currently available.

**Pre-conditions**
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNumOutputs</td>
<td>[in/out] As an input, specifies the size of the pOutputDeviceIDs array (ignored if pOutputDeviceIDs is NULL). As an output, specifies the number of audio output devices currently available in the system. Returns 0 if no audio output devices are active in the system.</td>
</tr>
<tr>
<td>pOutputDeviceIDs</td>
<td>[out] Array of audio output device IDs that are currently available in the system. This parameter is populated by the call with the array of output device IDs (provided that pNumOutputs is equal to or greater than the number of actual device IDs).</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_BUFFER_INSUFFICIENT
- SL_RESULT_PARAMETER_INVALID

**Comments**
Note that “available” implies those audio output devices that are active (that is, can render audio) and this number may be less than or equal to the total number of audio output devices on the system. For example, if a system has both an integrated loudspeaker and a 3.5mm headphone jack, but if the headphone jack is not connected to anything, the number of available audio outputs is only 1.

Device IDs should not be expected to be contiguous.

Device IDs are unique: the same device ID must not be used for different device types.

**See Also**
GetAvailableAudioInputs()
### QueryAudioOutputCapabilities

```c
SLresult (*QueryAudioOutputCapabilities)(
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLAudioOutputDescriptor *pDescriptor
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the capabilities of the specified audio output device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>deviceID</td>
<td>[in] ID of the audio output device.</td>
</tr>
<tr>
<td>pDescriptor</td>
<td>[out] Structure defining the characteristics of the audio output device [see section 9.1.4].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_IO_ERROR</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See Also</td>
<td>QueryAudioInputCapabilities(), QuerySampleFormatsSupported()</td>
</tr>
</tbody>
</table>

### RegisterAvailableAudioOutputsChangedCallback

```c
SLresult (*RegisterAvailableAudioOutputsChangedCallback)(
 SLAudioIODeviceCapabilitiesItf self,
 slAvailableAudioOutputsChangedCallback callback,
 void *pContext
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or clears slAvailableAudioOutputsChangedCallback().</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>callback</td>
<td>[in] Address of the callback.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See Also</td>
<td>slAvailableAudioOutputsChangedCallback()</td>
</tr>
</tbody>
</table>
### RegisterDefaultDeviceIDMapChangedCallback

```
SLresult (*RegisterDefaultDeviceIDMapChangedCallback)(
 SLAudioIODeviceCapabilitiesItf self,
 slDefaultDeviceIDMapChangedCallback callback,
 void *pContext
);
```

| Description | Sets or clears `slDefaultDeviceIDMapChangedCallback()`.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><strong>callback</strong></td>
<td>[in] Address of the callback.</td>
</tr>
<tr>
<td><strong>pContext</strong></td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See Also</td>
<td><code>slDefaultDeviceIDMapChangedCallback()</code></td>
</tr>
</tbody>
</table>
### GetAssociatedAudioInputs

```c
SLresult (*GetAssociatedAudioInputs) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLint32 *pNumAudioInputs,
 SLuint32 *pAudioInputDeviceIDs
);
```

**Description**
This method returns an array of audio input devices physically associated with this audio I/O device.

**Pre-conditions**
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviceID</td>
<td>[in] ID of the input or output device.</td>
</tr>
<tr>
<td>pNumAudioInputs</td>
<td>[in/out] As an input, specifies the length of the pAudioInputDeviceIDs array (ignored if pAudioInputDeviceIDs is NULL). As an output, specifies the number of audio input device IDs associated with deviceID. Returns zero if there is no such association.</td>
</tr>
<tr>
<td>pAudioInputDeviceIDs</td>
<td>[out] Array of audio input device IDs. Should be ignored if pNumAudioInputs is zero – that is, if there are no associated audio inputs. This parameter is populated by the call with the array of input device IDs (provided that pNumInputs is equal to or greater than the number of actual input device IDs).</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_BUFFER_INSUFFICIENT
- SL_RESULT_IO_ERROR
### GetAssociatedAudioInputs

| Comments | This method can be called on both audio input and audio output devices. It is useful for determining coupling of audio inputs and outputs on certain types of accessories. For example, it is helpful to know that microphone 01 is actually part of the same Bluetooth headset as speaker 03. Also, many car kits have multiple speakers and multiple microphones. Hence the need for an array of associated input devices. For applications that both accept and render audio, this method helps to determine whether an audio input and an audio output belong to the same physical accessory.

An audio device cannot be associated with itself. So, in the example above, if this method were to be called with microphone 01 as the deviceID parameter, it would return an empty array, since there are no other inputs associated with microphone 01 on that Bluetooth headset.

| See also | GetDefaultAudioDevices() |
### GetAssociatedAudioOutputs

```
SLresult (*GetAssociatedAudioOutputs) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLuint32 *pNumAudioOutputs,
 SLuint32 *pAudioOutputDeviceIDs
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>This method returns an array of audio output devices physically associated with this audio I/O device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviceID</td>
<td>[in] ID of the input or output device.</td>
</tr>
<tr>
<td>pNumAudioOutputs</td>
<td>[in/out] As an input, specifies the length of the pAudioOutputDeviceIDs array (ignored if pAudioOutputDeviceIDs is NULL). As an output, specifies the number of audio output device IDs associated with deviceID. Returns zero if there is no such association.</td>
</tr>
<tr>
<td>pAudioOutputDeviceIDs</td>
<td>[out] Array of audio output device IDs. Should be ignored if pNumAudioOutputs is zero (that is, there are no associated audio outputs). This parameter is populated by the call with the array of output device IDs (provided that pNumAudioOutputs is equal to or greater than the number of actual device IDs).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_BUFFER_INSUFFICIENT</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_IO_ERROR</td>
<td></td>
</tr>
</tbody>
</table>
### GetAssociatedAudioOutputs

| Comments | This method can be called on both audio input and audio output devices. It is useful for determining coupling of audio inputs and outputs on certain types of accessories. For example, it is helpful to know that microphone 01 is actually part of the same Bluetooth headset as speaker 03. Also, many car kits have multiple speakers and multiple microphones. Hence the need for an array of associated output devices. For applications that both accept and render audio, this method helps to determine whether an audio input and an audio output belong to the same physical accessory. An audio device cannot be associated with itself. So, in the example above, if this method were to be called with speaker 03 as the deviceID parameter, it would return an empty array, since there are no other outputs associated with speaker 03 on that Bluetooth headset. |
| See also | GetDefaultAudioDevices() |
GetDefaultAudioDevices

```
SLresult (*GetDefaultAudioDevices) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 defaultDeviceID,
 SLint32 *pNumAudioDevices,
 SLuint32 *pAudioDeviceIDs
);
```

**Description**

Gets the number of audio devices currently mapped to the given default device ID.

**Pre-conditions**

None

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>defaultDeviceID</td>
<td>[in]</td>
<td>ID of the default device (currently defined as SL_DEFAULTDEVICEID_AUDIOOUTPUT and SL_DEFAULTDEVICEID_AUDIOINPUT [see section 9.2.10]).</td>
</tr>
<tr>
<td>pNumAudioDevices</td>
<td>[in/out]</td>
<td>As an input, specifies the length of the pAudioDeviceIDs array (ignored if pAudioDeviceIDs is NULL). As an output, specifies the number of audio device IDs mapped to the given defaultDeviceID.</td>
</tr>
<tr>
<td>pAudioDeviceIDs</td>
<td>[out]</td>
<td>Array of audio device IDs that are currently mapped to the given defaultDeviceID. This parameter is populated by the call with the array of device IDs (provided that pNumAudioDevices is equal to or greater than the number of actual device IDs). If pNumAudioDevices is less than the number of actual mapped device IDs, the error code SL_RESULT_BUFFER_INSUFFICIENT is returned.</td>
</tr>
</tbody>
</table>

**Return value**

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_BUFFER_INSUFFICIENT
- SL_RESULT_IO_ERROR
- SL_RESULT_PARAMETER_INVALID

**Comments**

The mapping of defaultDeviceID to the physical audio devices (represented by the device IDs) is implementation-dependent. The application can choose to be notified of the implementation-induced changes to this mapping by registering for the slDefaultDeviceIDMapChangedCallback().
### GetDefaultAudioDevices

<table>
<thead>
<tr>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>RegisterDefaultDeviceIDMapChangedCallback(), GetAssociatedAudioInputs(), GetAssociatedAudioOutputs()</td>
</tr>
</tbody>
</table>
### QuerySampleFormatsSupported

```c
SLresult (*QuerySampleFormatsSupported) (
 SLAudioIODeviceCapabilitiesItf self,
 SLuint32 deviceID,
 SLmilliHertz samplingRate,
 SLint16 *pSampleFormats,
 SLint16 *pNumOfSampleFormats,
);
```

#### Description

Gets an array of sample formats supported by the audio I/O device for the given sampling rate. The rationale here is that an audio I/O device might not support all sample formats at all sampling rates. Therefore, it is necessary to query the sample formats supported for each sampling rate of interest.

#### Pre-conditions

None

#### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviceID</td>
<td>[in]</td>
<td>ID of the audio I/O device</td>
</tr>
<tr>
<td>samplingRate</td>
<td>[in]</td>
<td>Sampling rate for which the sampling formats are to be determined.</td>
</tr>
<tr>
<td>pSampleFormats</td>
<td>[out]</td>
<td>Array of sample formats supported, as defined in the <code>SL_PCMSAMPLEFORMAT</code> macros. This parameter is populated by the call with the array of supported sample formats (provided that <code>pNumOfSampleFormats</code> is equal to or greater than the number of actual sample formats).</td>
</tr>
<tr>
<td>pNumOfSampleFormats</td>
<td>[in/out]</td>
<td>As an input, specifies the length of the <code>pSampleFormats</code> array (ignored if <code>pSampleFormats</code> is NULL). As an output, specifies the number of sample formats supported.</td>
</tr>
</tbody>
</table>

#### Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_BUFFER_INSUFFICIENT`
- `SL_RESULT_IO_ERROR`

#### Comments

None

#### See Also

- `QueryAudioInputCapabilities()`, `QueryAudioOutputCapabilities()`
8.11 SLBassBoostItf

Description

This interface is for controlling bass boost functionality.

This interface affects different parts of the audio processing chain, depending on which object the interface is exposed. If this interface is exposed on an Output Mix object, the effect is applied to the output mix. If this interface is exposed on a Player object, it is applied to the Player’s output only. For more information, see section 4.5.1.

Prototype

```c
extern const SLInterfaceID SL_IID_BASSBOOST;

struct SLBassBoostItf_;
typedef const struct SLBassBoostItf_ * const * SLBassBoostItf;

struct SLBassBoostItf_ {
 SLresult (*SetEnabled)(
 SLBassBoostItf self,
 SLboolean enabled
);
 SLresult (*IsEnabled)(
 SLBassBoostItf self,
 SLboolean *pEnabled
);
 SLresult (*SetStrength)(
 SLBassBoostItf self,
 SLpermille strength
);
 SLresult (*GetRoundedStrength)(
 SLBassBoostItf self,
 SLpermille *pStrength
);
 SLresult (*IsStrengthSupported)(
 SLBassBoostItf self,
 SLboolean *pSupported
);
};
```

Interface ID

0634f220-ddd4-11db-a0fc-0002a5d5c51b
Defaults

Enabled: false (disabled)

Strength: implementation-dependent

Methods

### SetEnabled

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>enabled[in] True to turn on the effect, false to switch it off.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

### IsEnabled

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the enabled status of the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pEnabled[out] True if the effect is on, false otherwise.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetStrength

```c
SLresult (*SetStrength)(
 SLBassBoostItf self,
 SLpermille strength
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the strength of the bass boost effect. If the implementation does not support per mille accuracy for setting the strength, it is allowed to round the given strength to the nearest supported value. You can use the GetRoundedStrength() method to query the (possibly rounded) value that was actually set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>strength</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>Please note that the strength does not affect the output if the effect is not enabled. This set method will in any event store the setting, even when the effect is not enabled currently.</td>
</tr>
<tr>
<td></td>
<td>Please note also that the strength can also change if the output device is changed (as, for example, from loudspeakers to headphones) and those output devices use different algorithms with different accuracies. You can use device changed callbacks [see section 8.10] to monitor device changes and then query the possibly changed strength using GetRoundedStrength() if you want, for example, the graphical user interface to follow the current strength accurately.</td>
</tr>
</tbody>
</table>
### GetRoundedStrength

```
SLresult (*GetRoundedStrength)(
 SLBassBoostItf self,
 SLpermille *pStrength
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the current strength of the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><strong>pStrength</strong> [out] The strength of the effect. The valid range for strength is [0, 1000], where 0 per mille designates the mildest effect and 1000 per mille the strongest,</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Please note that the strength does not affect the output if the effect is not enabled.</td>
</tr>
<tr>
<td></td>
<td>Please note also that in some cases the exact mapping of the strength to the underlying algorithms might not maintain the full accuracy exposed by the API.</td>
</tr>
</tbody>
</table>

### IsStrengthSupported

```
SLresult (*IsStrengthSupported)(
 SLBassBoostItf self,
 SLboolean *pSupported
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Indicates whether setting strength is supported. If this method returns false, only one strength is supported and the SetStrength method always rounds to that value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><strong>pSupported</strong> [out] True if setting of the strength is supported, false if only one strength is supported.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
8.12  SLBufferQueueItf

Description

This interface is used for streaming audio data. It provides a method for queuing up buffers on a player object for playback by the device. It also provides for a callback function called whenever a buffer in the queue is completed. The buffers are played in the order in which they are queued. The state of the buffer queue can be queried to provide information on the playback status of the buffer queue. This interface implements a simple streaming mechanism.

- An attempt to instantiate an SLBufferQueueItf on a media object whose data source is not of type SL_DATALOCATOR_BUFFERQUEUE or SL_DATALOCATOR_MIDIBUFFERQUEUE is invalid and will fail.
- When the player is in the SL_PLAYSTATE_PLAYING state, which is controlled by the SLPlayItf interface [see section 8.32], adding buffers will implicitly start playback. In the case of starvation due to insufficient buffers in the queue, the playing of audio data stops. The player remains in the SL_PLAYSTATE_PLAYING state. Upon queuing of additional buffers, the playing of audio data resumes. Note that starvation of queued buffers causes audible gaps in the audio data stream. In the case where the player is not in the playing state, addition of buffers does not start audio playback.
- The buffers that are queued are used in place and are not required to be copied by the device, although this may be implementation-dependent. The application developer should be aware that modifying the content of a buffer after it has been queued is undefined and can cause audio corruption.
- Once an enqueued buffer has finished playing, as notified by the callback notification, it is safe to delete the buffer or fill the buffer with new data and once again enqueue the buffer for playback.
- On transition to the SL_PLAYSTATE_STOPPED state the play cursor is returned to the beginning of the currently playing buffer.
- On transition to the SL_PLAYSTATE_PAUSED state the play cursor remains at the current position in the buffer.
- For a player whose data source is a buffer queue, it is not possible to seek within the buffer. An attempt to instantiate the SLSeekItf interface [see section 8.38] on a media object with a buffer queue as a data source will fail.

This interface is supported on the Audio Player [see section 7.2] object.

See sections B.1.1 and C.4.2 for examples using this interface.

Prototype

```c
extern const SLInterfaceID SL_IID_BUFFERQUEUE;
```
struct SLBufferQueueItf_;  
typedef const struct SLBufferQueueItf_ * const * SLBufferQueueItf;

struct SLBufferQueueItf_ {  
  SLresult (*Enqueue) (  
    SLBufferQueueItf self,  
    const void *pBuffer,  
    SLuint32 size  
  );  
  SLresult (*Clear) (  
    SLBufferQueueItf self  
  );  
  SLresult (*GetState) (  
    SLBufferQueueItf self,  
    SLBufferQueueState *pState  
  );  
  SLresult (*RegisterCallback) (  
    SLBufferQueueItf self,  
    slBufferQueueCallback callback,  
    void* pContext  
  );  
};

Interface ID
2bc99cc0-ddd4-11db-8d99-0002a5d5c51b

Defaults
- No buffers are queued.
- No callback method is registered.

Callbacks

### slBufferQueueCallback

<table>
<thead>
<tr>
<th>Description</th>
<th>Callback function called on completion of playing a buffer in the buffer queue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>caller</td>
<td>[in] Interface instantiation on which the callback was registered.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td>Comments</td>
<td>This is not a method of the interface but is the callback description and prototype.</td>
</tr>
<tr>
<td>See Also</td>
<td>RegisterCallback()</td>
</tr>
</tbody>
</table>

typedef void (SLAPIENTRY *slBufferQueueCallback) (  
  SLBufferQueueItf caller,  
  void *pContext  
);
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Pre-conditions</th>
<th>Parameters</th>
<th>Return value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enqueue</td>
<td>Adds a buffer to the queue. The method takes a pointer to the data to queue and the size in bytes of the buffer as arguments. The buffers are played in the order in which they are queued using this method.</td>
<td>None</td>
<td>self [in] Interface self-reference. &lt;br&gt; pBuffer [in] Pointer to the buffer data to enqueue. Must be non-NULL. &lt;br&gt; size [in] Size of data in bytes. Must be greater than zero.</td>
<td>The return value can be one of the following: &lt;br&gt; SL_RESULT_SUCCESS &lt;br&gt; SL_RESULT_PARAMETER_INVALID &lt;br&gt; SL_RESULT_BUFFER_INSUFFICIENT</td>
<td>When the media object is in the SL_PLAYSTATE_PLAYING state, which is controlled by the SLPlayItf interface [see section 8.32], adding buffers will implicitly start playback. In the case of starvation due to insufficient buffers in the queue the playing of audio data stops. The media object remains in the SL_PLAYSTATE_PLAYING state. Upon queuing of additional buffers, the playing of audio data resumes. Note that starvation of queued buffers causes audible gaps in the audio data stream. If the maximum number of buffers specified in the SDLDataLocator_BufferQueue structure used as the data source when creating the media object using the CreateAudioPlayer or CreateMidiPlayer method has been reached, the buffer is not added to the buffer queue and SL_RESULT_BUFFER_INSUFFICIENT is returned. At this point the client should wait until it receives a callback notification for a buffer completion at which time it can enqueue the buffer.</td>
</tr>
</tbody>
</table>
### Clear

**Signature**

\[
\text{SLresult (*Clear)}(\text{SLBufferQueueItf self})
\]

**Description**

Releases all buffers currently queued in the buffer queue. The callback function for the released buffers is not called. The \text{SLBufferQueueState} is reset to the initial state.

**Pre-conditions**

None

**Parameters**


**Return value**

The return value can be one of the following:
- \text{SL_RESULT_SUCCESS}

**Comments**

This method resets the cumulative position information used in the \text{SLPlayItf} interfaces for \text{GetPosition}().

### GetState

**Signature**

\[
\text{SLresult (*GetState)}(\text{SLBufferQueueItf self, SLBufferQueueState *pState})
\]

**Description**

Returns the current state of the buffer queue.

**Pre-conditions**

None

**Parameters**

- `pState` [out] Pointer to a location ready to receive the buffer queue state. The \text{SLBufferQueueState} structure contains information on the current number of queued buffers and the index of the currently playing buffer.

**Return value**

The return value can be one of the following:
- \text{SL_RESULT_SUCCESS}
- \text{SL_RESULT_PARAMETER_INVALID}

**Comments**

None
### RegisterCallback

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the callback function to be called on buffer completion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The <code>RegisterCallback()</code> method can only be called while the media object is in the <code>SL_PLAYSTATE_STOPPED</code> state.</td>
</tr>
</tbody>
</table>

#### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>self</code></td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td><code>callback</code></td>
<td>Pointer to callback function to call on buffer completion. The callback is called on the completion of each buffer in the queue. If <code>NULL</code>, the callback is disabled.</td>
</tr>
<tr>
<td><code>pContext</code></td>
<td>User context data that is to be returned as part of the callback method.</td>
</tr>
</tbody>
</table>

#### Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_PRECONDITIONS_VIOLATED`

#### Comments

The `RegisterCallback()` method can only be called while the media object is in the `SL_PLAYSTATE_STOPPED` state, to avoid race conditions between removal of the callback function and callbacks that may be in process. The callback function may be changed by calling the `RegisterCallback()` method multiple times, but only while the media object is in the stopped state. `SL_RESULT_PRECONDITIONS_VIOLATED` is returned if the media object is not in the `SL_PLAYSTATE_STOPPED` state when the method is called.

```c
SLresult (*RegisterCallback)(
 SLBufferQueueItf self,
 slBufferQueueCallback callback,
 void *pContext
);
```
8.13 SLDeviceVolumeItf

Description

This interface exposes controls for manipulating the volume of specific audio input and audio output devices. The units used for setting and getting the volume can be in millibels or as arbitrary volume steps; the units supported by the device can be queried with GetVolumeScale method.

Support for this interface is optional, but, where supported, this interface should be exposed on the engine object.

Prototype

```c
extern const SLInterfaceID SL_IID_DEVICERVOLUME;

struct SLDeviceVolumeItf_;
typedef const struct SLDeviceVolumeItf_ * const * SLDeviceVolumeItf;

struct SLDeviceVolumeItf_ {
 SLresult (*GetVolumeScale) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pMinValue,
 SLint32 *pMaxValue,
 SLboolean *pIsMillibelScale
);
 SLresult (*SetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 volume
);
 SLresult (*GetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pVolume
);
};
```

Interface ID

e1634760-f3e2-11db-9ca9-0002a5d5c51b

Defaults

The default volume setting of each device should be audible.
### Methods

#### GetVolumeScale

```c
SLresult (*GetVolumeScale) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pMinValue,
 SLint32 *pMaxValue,
 SLboolean *pIsMillibelScale
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the properties of the volume scale supported by the given device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td></td>
</tr>
<tr>
<td><code>deviceID</code></td>
<td>[in] Audio input or output device’s identifier.</td>
</tr>
<tr>
<td><code>pMinValue</code></td>
<td>[out] The smallest supported volume value of the device.</td>
</tr>
<tr>
<td><code>pMaxValue</code></td>
<td>[out] The greatest supported volume value of the device.</td>
</tr>
<tr>
<td><code>pIsMillibelScale</code></td>
<td>[out] If true, the volume values used by GetVolume, SetVolume and this method are in millibel units; if false, the volume values are in arbitrary volume steps.</td>
</tr>
<tr>
<td><strong>Return value</strong></td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td><strong>Comments</strong></td>
<td>This method may return SL_RESULT_FEATURE_UNSUPPORTED if the specified device does not support changes to its volume. The scale is always continuous and device-specific. It could be, for example, [0, 15] if arbitrary volume steps are used or [-32768, 0] if millibels are used.</td>
</tr>
<tr>
<td><strong>See also</strong></td>
<td>SLAudioIODeviceCapabilitiesItf(), SLOutputMixItf()</td>
</tr>
</tbody>
</table>
## SetVolume

```c
SLresult (*SetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 volume
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the device’s volume level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td><strong>Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>deviceID</td>
<td>[in] Device’s identifier.</td>
</tr>
<tr>
<td>volume</td>
<td>[in] The new volume setting. The valid range is continuous and its boundaries can be queried from GetVolumeScale method.</td>
</tr>
<tr>
<td><strong>Return value</strong></td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td><strong>Comments</strong></td>
<td>The minimum and maximum supported volumes are device-dependent. This method may fail if the specified device does not support changes to its volume or the volume is outside the range supported by the device.</td>
</tr>
<tr>
<td><strong>See also</strong></td>
<td>SLAudioIODeviceCapabilitiesItf(), SLOutputMixItf()</td>
</tr>
</tbody>
</table>
### GetVolume

```
SLresult (*GetVolume) (
 SLDeviceVolumeItf self,
 SLuint32 deviceID,
 SLint32 *pVolume
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the device’s volume.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>deviceID</td>
<td>[in]</td>
</tr>
<tr>
<td>pVolume</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>SL_RESULT_FEATURE_UNSUPPORTED is returned if the specified device does not support changes to its volume.</td>
</tr>
</tbody>
</table>
8.14 SLDynamicInterfaceManagementItf

Description

The SLDynamicInterfaceManagementItf interface provides methods for handling interface exposure on an object after the creation and realization of the object. The primary method for exposing interfaces on an object is by listing them in the engine object’s creation methods [see section 8.17].

SLDynamicInterfaceManagementItf is an implicit interface of all object types. Please refer to section 3.1.6 for details about how dynamically exposed interfaces work with the object states and other exposed interfaces.

This interface is supported on all objects [see section 7].

See sections B.2 and C.2 for examples using this interface.

Defaults

No dynamic interfaces are exposed.

No callback is registered.
Prototype

```
extern const SLInterfaceID SL_IID_DYNAMICINTERFACEMANAGEMENT;

struct SLDynamicInterfaceManagementItf_
typedef const struct SLDynamicInterfaceManagementItf_
* const * SLDynamicInterfaceManagementItf;

struct SLDynamicInterfaceManagementItf_ {
 SLresult (*AddInterface) (SLDynamicInterfaceManagementItf self, const SLInterfaceID iid, SLboolean async);
 SLresult (*RemoveInterface) (SLDynamicInterfaceManagementItf self, const SLInterfaceID iid);
 SLresult (*ResumeInterface) (SLDynamicInterfaceManagementItf self, const SLInterfaceID iid, SLboolean async);
 SLresult (*RegisterCallback) (SLDynamicInterfaceManagementItf self, slDynamicInterfaceManagementCallback callback, void * pContext);
};
```

Interface ID

63936540-f775-11db-9cc4-0002a5d5c51b
## Callbacks

### slDynamicInterfaceManagementCallback

```c
typedef void (SLAPIENTRY *slDynamicInterfaceManagementCallback) (
 SDLDynamicInterfaceManagementItf caller,
 void * pContext,
 SLuint32 event,
 SLresult result,
 const SLInterfaceID iid
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>A callback function, notifying of a runtime error, termination of an asynchronous call or change in a dynamic interface's resources.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>caller</td>
<td>[in] Interface that invoked the callback.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is supplied when the callback method is registered.</td>
</tr>
</tbody>
</table>
| result      | [in] Contains either the error code, if the event is `SL_DYNAMIC_ITF_EVENT_RUNTIME_ERROR`, or the asynchronous function return code, if the event is `SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION`. The result may be:  
  * `SL_RESULT_SUCCESS`
  * `SL_RESULT_PARAMETER_INVALID`
  * `SL_RESULT_MEMORY_FAILURE`
  * `SL_RESULT_FEATURE_UNSUPPORTED` |
| iid         | [in] Interface type ID that the event affects.                                                    |

### Comments

Please note the restrictions applying to operations performed from within callback context in section 3.3.

### See also

RegisterCallback()
Methods

AddInterface

```c
SLresult (*AddInterface) (
 SDLDynamicInterfaceManagementItf self,
 const SLInterfaceID iid,
 SLboolean async
);
```

**Description**
Optional asynchronously method for exposing an interface on an object. In asynchronous mode, the success or failure of exposing the interface will be sent to the registered callback function.

**Pre-conditions**
Interface has not been exposed.

**Parameters**
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td>iid</td>
<td>Valid interface type ID.</td>
</tr>
<tr>
<td>async</td>
<td>If SL_BOOLEAN_FALSE, the method will block until termination. Otherwise, the method will return SL_RESULT_SUCCESS, and will be executed asynchronously. However, if the implementation is unable to initiate the asynchronous call, SL_RESULT_RESOURCE_ERROR will be returned.</td>
</tr>
</tbody>
</table>

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_MEMORY_FAILURE
- SL_RESULT_FEATURE_UNSUPPORTED
- SL_RESULT_PRECONDITIONS_VIOLATED

**Comments**
When successful, the interface is exposed on the object and the interface pointer can be obtained by SLObjectItf::GetInterface().

Adding the interface to the object acquires the resources required for its functionality. The operation may fail if insufficient resources are available. In such a case, the application may wait until resources become available (SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE event is sent [see section 9.2.14]), and then resume the interface. Additionally, the application may increase the object’s priority, thus increasing the likelihood that the object will steal another object’s resources.

Adding an interface that is already exposed will result in a return value of SL_RESULT_PRECONDITIONS_VIOLATED.

**See also**
SLObjectItf::GetInterface()
RemoveInterface

```c
SLresult (*RemoveInterface) (SDLDynamicInterfaceManagementItf self,
const SLInterfaceID iid
);
```

**Description**
Synchronous method for removing a dynamically exposed interface on the object. This method is supported in all object states.

**Pre-conditions**
Interface has been exposed.

**Parameters**
- `iid` [in] Valid interface type ID that has been exposed on this object by use of the AddInterface() method.

**Return value**
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_PRECONDITIONS_VIOLATED

**Comments**
An object that is suspended or unrealized waits also for resources for dynamically managed interfaces before sending a SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE event [see section 9.2.14]. By removing a dynamic interface in an Unrealized or Suspended state, the object does not wait for resources for that dynamic interface. Removing an interface that is not exposed will result in a return value of SL_RESULT_PRECONDITIONS_VIOLATED.

**See also**
None
**ResumeInterface**

<table>
<thead>
<tr>
<th>Description</th>
<th>Optionally asynchronous method for resuming a dynamically exposed interface on the object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>iid</td>
<td>[in] Valid interface type ID that has been exposed on this object by use of the AddInterface() method.</td>
</tr>
<tr>
<td>async</td>
<td>[in] If SL_BOOLEAN_FALSE, the method will block until termination. Otherwise, the method will return SL_RESULT_SUCCESS, and will be executed asynchronously. However, if the implementation is unable to initiate the asynchronous call SL_RESULT_RESOURCE_ERROR will be returned.</td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:  
| | SL_RESULT_SUCCESS  
| | SL_RESULT_PARAMETER_INVALID |
| Comments | When successful, the interface is exposed on the object and the interface pointer can be obtained by SLObjectItf::GetInterface().  
| | This method can be used on a suspended dynamic interface after reception of a SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE event [see section 9.2.14]. |
| See also | None |
### RegisterCallback

```c
SLresult (*RegisterCallback) (
 SLDynamicInterfaceManagementItf self,
 slDynamicInterfaceManagementCallback callback,
 void * pContext
);
```

#### Description
Registers a callback on the object that executes when a runtime error, termination of an asynchronous call or change in a dynamic interface’s resources occurs.

#### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>callback</td>
<td>[in]</td>
<td>Address of the result callback. If NULL, the callback is disabled.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in]</td>
<td>User context data that is to be returned as part of the callback method.</td>
</tr>
</tbody>
</table>

#### Return value
The return value can be one of the following:

- **SL_RESULT_SUCCESS**

#### Comments
None

#### See also
- `slDynamicInterfaceManagementCallback()`
8.15 SLDynamicSourceItf

Description
This interface exposes a control for changing the data source of the object during the lifetime of the object.

Prototype

```c
extern const SLInterfaceID SL_IID_DYNAMICSOURCE;

struct SLDynamicSourceItf;
typedef const struct SLDynamicSourceItf * const * SLDynamicSourceItf;

struct SLDynamicSourceItf {
 SLresult (*SetSource)(
 SLDynamicSourceItf self,
 SLDataSource *pDataSource
)
};
```

Interface ID

c55cc100-038b-11dc-bb45-0002a5d5c51b

Defaults

The data source set by application during object creation.
## Methods

### SetSource

```c
def SLresult (*SetSource) (
 SLDynamicSourceItf self,
 SLDataSource *pDataSource
)
```

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Pre-conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Interface self-reference</td>
<td>None</td>
</tr>
<tr>
<td>pDataSource</td>
<td>Pointer to the structure specifying the media data source (such as a container file). Must be non-NULL. In the case of a Metadata Extractor object, only local data sources are mandated to be supported.</td>
<td></td>
</tr>
</tbody>
</table>

**Return value**

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_MEMORY_FAILURE
- SL_RESULT_IO_ERROR
- SL_RESULT_CONTENT_CORRUPTED
- SL_RESULT_CONTENT_UNSUPPORTED
- SL_RESULT_CONTENT_NOT_FOUND
- SL_RESULT_PERMISSION_DENIED

**Comments**

Setting a source for a Metadata Extractor object will reset its `SLMetadataExtractionItf` and `SLMetadataTraversalItf` interfaces [see section 8.22 and 8.23] to point to the new source and reset those interfaces to their initial values.

**See also**

None
8.16 SLEffectSendItf

Description

This interface allows an application developer to control a sound’s contribution to auxiliary effects. An auxiliary effect is identified by its interface pointer. The only auxiliary effect standardized in the specification is a single reverb. Some implementations may expose other auxiliary effects.

The auxiliary effect will need to be enabled for this interface to have any audible effect. For the reverb effect, this requires exposing either PresetReverb [see section 8.35] or EnvironmentalReverb [see Section 8.19] on the Output Mix object.

This interface is supported on the Audio Player [see section 7.2] and MIDI Player [see section 7.8] objects.

See sections B.6.1, C.2 and C.4 for examples using this interface.

Prototype

```c
extern const SLInterfaceID SL_IID_EFFECTSEND;

struct SLEffectSendItf_;
typedef const struct SLEffectSendItf_ * const * SLEffectSendItf;

struct SLEffectSendItf_ {
 SLresult (*EnableEffectSend) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLboolean enable,
 SLmillibel initialLevel
);
 SLresult (*IsEnabled) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLboolean *pEnable
);
 SLresult (*SetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel directLevel
);
 SLresult (*GetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel *pDirectLevel
);
};
```
```c
SLresult (*SetSendLevel) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel sendLevel
);
SLresult (*GetSendLevel)(
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel *pSendLevel
);
```

**Interface ID**

56e7d200-ddd4-11db-aefb-0002a5d5c51b

**Defaults**

Direct level: 0 mB (no level change)

No effect sends enabled.
## EnableEffectSend

```c
SLresult (*EnableEffectSend) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLboolean enable,
 SLmillibel initialLevel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables or disables the player’s contribution to an auxiliary effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>pAuxEffect</code> [in]</td>
<td>Pointer to the auxiliary effect’s interface.</td>
</tr>
<tr>
<td><code>enable</code> [in]</td>
<td>If true, the path to the auxiliary effect is enabled. If false, the path to the auxiliary effect is disabled.</td>
</tr>
<tr>
<td><code>initialLevel</code> [in]</td>
<td>Player’s send path level for the specified effect. The valid range is ([SL_MILLIBEL_MIN, 0]).</td>
</tr>
</tbody>
</table>

### Return value

The return value can be one of the following:

- `SL\_RESULT\_SUCCESS`
- `SL\_RESULT\_PARAMETER\_INVALID`
- `SL\_RESULT\_MEMORY\_FAILURE`
- `SL\_RESULT\_FEATURE\_UNSUPPORTED`

### Comments

This method may fail with the return value `SL\_RESULT\_RESOURCE\_ERROR`, if the implementation is unable to feed the player’s output to the specified effect.

The implementation shall return `SL\_RESULT\_PARAMETER\_INVALID` if `pAuxEffect` is not a valid effect interface for use with the effect send interface.
### IsEnabled

**Function**

```c
SLresult (*IsEnabled) (
SLEffectSendItf self,
const void *pAuxEffect,
SLboolean *pEnable
);
```

**Description**

Returns whether a player’s output is fed into an auxiliary effect.

**Pre-conditions**

None

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAuxEffect</td>
<td>[in] Pointer to the auxiliary effect’s interface.</td>
<td></td>
</tr>
<tr>
<td>pEnable</td>
<td>[out] Pointer to a location for the enabled status. This must be non-NULL.</td>
<td></td>
</tr>
</tbody>
</table>

**Return value**

The return value can be one of the following:

- **SL_RESULT_SUCCESS**
- **SL_RESULT_PARAMETER_INVALID**

**Comments**

The implementation shall return **SL_RESULT_PARAMETER_INVALID** if `pAuxEffect` is not a valid effect interface for use with the effect send interface.

### SetDirectLevel

**Function**

```c
SLresult (*SetDirectLevel) (
SLEffectSendItf self,
SLmillibel directLevel
);
```

**Description**

Sets the dry (direct) path level for a sound.

**Pre-conditions**

None

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>directLevel</td>
<td>[in] Direct path level in millibels. The valid range is [SL_MILLIBEL_MIN, 0].</td>
<td></td>
</tr>
</tbody>
</table>

**Return value**

The return value can be one of the following:

- **SL_RESULT_SUCCESS**
- **SL_RESULT_PARAMETER_INVALID**

**Comments**

None
### GetDirectLevel

```c
SLresult (*GetDirectLevel) (
 SLEffectSendItf self,
 SLmillibel *pDirectLevel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the player’s direct path level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td><code>pDirectLevel</code> [out] Pointer to a location for receiving the direct path level in millibels.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

### SetSendLevel

```c
SLresult (*SetSendLevel) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel sendLevel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the player’s send path level for a specified auxiliary effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>Effect send is enabled (using <code>EnableEffectSend()</code>).</td>
</tr>
<tr>
<td></td>
<td><code>pAuxEffect</code> [in] Pointer to the auxiliary effect’s interface.</td>
</tr>
<tr>
<td></td>
<td><code>sendLevel</code> [in] Send level in millibels. The valid range is <code>[SL_MILLIBEL_MIN, 0]</code>.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PRECONDITIONS_VIOLATED</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
</tbody>
</table>
### GetSendLevel

```c
SLresult (*GetSendLevel) (
 SLEffectSendItf self,
 const void *pAuxEffect,
 SLmillibel *pSendLevel
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the player’s send path level for a specified auxiliary effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>Effect send is enabled (using <code>EnableEffectSend()</code>).</td>
</tr>
<tr>
<td></td>
<td><strong>pAuxEffect</strong> [in] Pointer to the auxiliary effect’s interface.</td>
</tr>
<tr>
<td></td>
<td><strong>pSendLevel</strong> [out] Pointer to location for receiving the send level in millibels.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PRECONDITIONS_VIOLATED</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
</tbody>
</table>

8.17 SLEngineItf

Description

This interface exposes creation methods of all the OpenSL ES object types.

This interface is supported on the engine [see section 7.4] object.

See Appendix B: and Appendix C: for examples using this interface.

Prototype

extern const SLInterfaceID SL_IID_ENGINE;

struct SLEngineItf_;  
typedef const struct SLEngineItf_ * const * SLEngineItf;

struct SLEngineItf_ {
    SLresult (*CreateLEDDevice) (  
        SLEngineItf self,  
        SLObjectItf * pDevice,  
        SLuint32 deviceID,  
        SLuint32 numInterfaces,  
        const SLInterfaceID * pInterfaceIds,  
        const SLboolean * pInterfaceRequired
    );
    SLresult (*CreateVibraDevice) (  
        SLEngineItf self,  
        SLObjectItf * pDevice,  
        SLuint32 deviceID,  
        SLuint32 numInterfaces,  
        const SLInterfaceID * pInterfaceIds,  
        const SLboolean * pInterfaceRequired
    );
    SLresult (*CreateAudioPlayer) (  
        SLEngineItf self,  
        SLObjectItf * pPlayer,  
        SDLDataSource *pAudioSrc,  
        SDLDataSink *pAudioSnk,  
        SLuint32 numInterfaces,  
        const SLInterfaceID * pInterfaceIds,  
        const SLboolean * pInterfaceRequired
    );
};
SLresult (*CreateAudioRecorder) (  
    SLEngineItf self,  
    SLObjectItf * pRecorder,  
    SLDataSource *pAudio Src,  
    SLDataSink *pAudioSnk,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);  
SLresult (*CreateMidiPlayer) (  
    SLEngineItf self,  
    SLObjectItf * pPlayer,  
    SLDataSource *pMIDISrc,  
    SLDataSource *pBank Src,  
    SLDataSink *pAudioOutput,  
    SLDataSink *pVibra,  
    SLDataSink *pLEDArray  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);  
SLresult (*CreateListener) (  
    SLEngineItf self,  
    SLObjectItf * pListener,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);  
SLresult (*Create3DGroup) (  
    SLEngineItf self,  
    SLObjectItf * pGroup,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);  
SLresult (*CreateOutputMix) (  
    SLEngineItf self,  
    SLObjectItf * pmix,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);  
SLresult (*CreateMetadataExtractor) (  
    SLEngineItf self,  
    SLObjectItf * pMetadataExtractor,  
    SLDataSource * pDataSource,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);
SLresult (*CreateExtensionObject) (  
   SLEngineItf self,  
   SLObjectItf * pObject,  
   void * pParameters,  
   SLuint32 objectID,  
   SLuint32 numInterfaces,  
   const SLInterfaceID * pInterfaceIds,  
   const SLboolean * pInterfaceRequired  
);
SLresult (*QueryNumSupportedInterfaces) (  
   SLEngineItf self,  
   SLuint32 objectID,  
   SLuint32 * pNumSupportedInterfaces  
);
SLresult (*QuerySupportedInterfaces) (  
   SLEngineItf self,  
   SLuint32 objectID,  
   SLuint32 index,  
   SLInterfaceID * pInterfaceId  
);
SLresult (*QueryNumSupportedExtensions) (  
   SLEngineItf self,  
   SLuint32 * pNumExtensions  
);
SLresult (*QuerySupportedExtension) (  
   SLEngineItf self,  
   SLuint32 index,  
   SLchar * pExtensionName,  
   SLint16 * pNameLength  
);
SLresult (*IsExtensionSupported) (  
   SLEngineItf self,  
   const SLchar * pExtensionName,  
   SLboolean * pSupported  
);

};

Interface ID

8d97c260-ddd4-11db-958f-0002a5d5c51b

Defaults

None (the interface is stateless)
## Methods

### CreateLEDDevice

```c
SLresult (*CreateLEDDevice) (
 SLEngineItf self,
 SLObjectItf * pDevice,
 SLuint32 deviceID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);
```

**Description**

Creates an LED device.

**Pre-conditions**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDevice</td>
<td>[out]</td>
<td>Newly-created LED device object.</td>
</tr>
<tr>
<td>deviceID</td>
<td>[in]</td>
<td>ID of the LED device.</td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in]</td>
<td>Number of interfaces that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td>pInterfaceIds</td>
<td>[in]</td>
<td>Array of numInterfaces interface IDs, which the object should support. This parameter is ignored if numInterfaces is zero.</td>
</tr>
<tr>
<td>pInterfaceRequired</td>
<td>[in]</td>
<td>Array of numInterfaces flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if numInterfaces is zero.</td>
</tr>
</tbody>
</table>

**Return value**

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_MEMORY_FAILURE
- SL_RESULT_IO_ERROR
- SL_RESULT_FEATURE_UNSUPPORTED

**Comments**

None

**See also**

SLEngineCapabilitiesItf [section 8.18] to determine the capabilities of the LED device.

LED Device Object [section 7.5]
### CreateVibraDevice

```c
SLresult (*CreateVibraDevice) (
 SLEngineItf self,
 SLObjectItf * pDevice,
 SLuint32 deviceID,
 SLuint32 numInterfaces,
 const SLInterfaceID * pInterfaceIds,
 const SLboolean * pInterfaceRequired
);```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates a vibrator device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>pDevice</code></td>
<td>[out] Newly-created vibrator device object.</td>
</tr>
<tr>
<td><code>deviceID</code></td>
<td>[in] ID of the vibrator device.</td>
</tr>
<tr>
<td><code>numInterfaces</code></td>
<td>[in] Number of interfaces that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td><code>pInterfaceIds</code></td>
<td>[in] Array of <code>numInterfaces</code> interface IDs, which the object should support. This parameter is ignored if <code>numInterfaces</code> is zero.</td>
</tr>
<tr>
<td><code>pInterfaceRequired</code></td>
<td>[in] Array of <code>numInterfaces</code> flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if <code>numInterfaces</code> is zero.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_IO_ERROR</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>SLEngineCapabilitiesItf [section 8.18] to determine the capabilities of the vibrator device. Vibra Device Object [section 7.10]</td>
</tr>
</tbody>
</table>
CreateAudioPlayer

```c
SLresult (*CreateAudioPlayer) (
    SLEngineItf self,
    SLObjectItf * pPlayer,
    SLDataSource *pAudioSrc,
    SLDataSink *pAudioSnk,
    SLuint32 numInterfaces,
    const SLInterfaceID * pInterfaceIds,
    const SLboolean * pInterfaceRequired
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates an audio player object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>If the data sink’s locator is an object (e.g. output mix) this object must be in the realized state.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pPlayer</td>
<td>[out] Newly created audio player object.</td>
</tr>
<tr>
<td>pAudioSrc</td>
<td>[in] Pointer to the structure specifying the audio data source (e.g. a compressed audio file). Must be non-NULL.</td>
</tr>
<tr>
<td>pAudioSnk</td>
<td>[in] Pointer to the structure specifying the audio data sink (such as an audio output device).</td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in] Number of interfaces that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td>pInterfaceIds</td>
<td>[in] Array of numInterfaces interface IDs, which the object should support. This parameter is ignored if numInterfaces is zero.</td>
</tr>
<tr>
<td>pInterfaceRequired</td>
<td>[in] Array of numInterfaces flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if numInterfaces is zero.</td>
</tr>
</tbody>
</table>
Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PRECONDITIONS_VIOLATED
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_MEMORY_FAILURE
- SL_RESULT_IO_ERROR
- SL_RESULT_CONTENT_CORRUPTED
- SL_RESULT_CONTENT_UNSUPPORTED
- SL_RESULT_CONTENT_NOT_FOUND
- SL_RESULT_PERMISSION_DENIED

See also

Audio Player Object [section 7.2]
CreateAudioRecorder

```c
SLresult (*CreateAudioRecorder) (
    SLengineItf self,
    SLObjectItf * pRecorder,
    SLDataSource *pAudioSrc,
    SLDataSink *pAudioSnk,
    SLuint32 numInterfaces,
    const SLInterfaceID * pInterfaceIds,
    const SLboolean * pInterfaceRequired
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates an audio recorder.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pRecorder</td>
<td>[out] Newly created audio recorder object.</td>
</tr>
<tr>
<td>pAudioSrc</td>
<td>[in] Pointer to the structure specifying the audio data source (such as a microphone device).</td>
</tr>
<tr>
<td>pAudioSnk</td>
<td>[in] Pointer to the structure specifying the audio data sink (such as a compressed audio output file). Must be non-NULL.</td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in] Number of interfaces that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td>pInterfaceIds</td>
<td>[in] Array of numInterfaces interface IDs, which the object should support. This parameter is ignored if numInterfaces is zero.</td>
</tr>
<tr>
<td>pInterfaceRequired</td>
<td>[in] Array of numInterfaces flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if numInterfaces is zero.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_IO_ERROR</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_BUFFER_INSUFFICIENT</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTENT_UNSUPPORTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PERMISSION_DENIED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
</tbody>
</table>

| See also | Audio Recorder Object [section 7.3] |
CreateMidiPlayer

```c
SLresult (*CreateMidiPlayer) (  
    SLEngineItf self,
    SLObjectItf * pPlayer,
    SLDataSource *pMIDISrc,
    SLDataSource *pBankSrc,
    SLDataSink *pAudioOutput,
    SLDataSink *pVibra,
    SLDataSink *pLEDArray,
    SLuint32 numInterfaces,
    const SLInterfaceID * pInterfaceIds,
    const SLboolean* pInterfaceRequired
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates a MIDI player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>If the audio output’s locator is an object (e.g. output mix) this object must be in the realized state.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pPlayer</td>
<td>[out] Newly created MIDI player object.</td>
</tr>
<tr>
<td>pMIDISrc</td>
<td>[in] Pointer to the structure specifying the MIDI data source. This data source must be a Mobile XMF [mXMF] or SP-MIDI [SP-MIDI] file reference, or a MIDI buffer queue.</td>
</tr>
<tr>
<td>pBankSrc</td>
<td>[in] Pointer to the structure specifying the instrument bank in Mobile DLS format. This is an optional parameter. If NULL, the default bank of instruments definitions is used.</td>
</tr>
<tr>
<td>pAudioOutput</td>
<td>[in] Pointer to the structure specifying the audio data sink (such as an audio output device).</td>
</tr>
<tr>
<td>pVibra</td>
<td>[in] Pointer to the structure specifying the vibra device to which the MIDI player should send vibra data. This is an optional parameter. If NULL, no vibra devices will be controlled by the MIDI data.</td>
</tr>
<tr>
<td>pLEDArray</td>
<td>[in] Pointer to the structure specifying the LED array device to which the MIDI player should send LED array data. This is an optional parameter. If NULL, no LED array devices will be controlled by the MIDI data.</td>
</tr>
</tbody>
</table>
CreateMidiPlayer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>numInterfaces</code></td>
<td>Number of interface that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td><code>pInterfaceIds</code></td>
<td>Array of <code>numInterfaces</code> interface IDs, which the object should support. This parameter is ignored if <code>numInterfaces</code> is zero.</td>
</tr>
<tr>
<td><code>pInterfaceRequired</code></td>
<td>An array of <code>numInterfaces</code> flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if <code>numInterfaces</code> is zero.</td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PRECONDITIONS_VIOLATED`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_MEMORY_FAILURE`
- `SL_RESULT_IO_ERROR`
- `SL_RESULT_CONTENT_CORRUPTED`
- `SL_RESULT_CONTENT_UNSUPPORTED`
- `SL_RESULT_CONTENT_NOT_FOUND`
- `SL_RESULT_PERMISSION_DENIED`
- `SL_RESULT_FEATURE_UNSUPPORTED`

Comments

The player creation may fail with a `SL_RESULT_FEATURE_UNSUPPORTED` code if a bank is provided in the `pBankSrc` parameter and in addition a bank is embedded in the MIDI source. In such a case, the application is advised to try creating the MIDI player without providing a bank in `pBankSrc`.

The application may wish to set `pMIDISrc` to `NULL` if it plans to solely use the MIDI messaging interface `SLMIDIMessageItf` [see section 8.24] to feed MIDI data from a single player to the MIDI synthesizer.

See also

- MIDI Player Object [section 7.8]
<table>
<thead>
<tr>
<th>CreateListener</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLresult (*CreateListener) (</td>
</tr>
<tr>
<td>SLEngineItf self,</td>
</tr>
<tr>
<td>SLObjectItf * pListener,</td>
</tr>
<tr>
<td>SLuint32 numInterfaces,</td>
</tr>
<tr>
<td>const SLInterfaceID * pInterfaceIds,</td>
</tr>
<tr>
<td>const SLboolean* pInterfaceRequired</td>
</tr>
<tr>
<td>)</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Pre-conditions</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Return value</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Comments</td>
</tr>
<tr>
<td>See also</td>
</tr>
</tbody>
</table>
Create3DGroup

| SLresult (*Create3DGroup) (|
| SLEngineItf self, |
| SLObjectItf * pGroup, |
| SLuint32 numInterfaces, |
| const SLInterfaceID * pInterfaceIds, |
| const SLboolean* pInterfaceRequired |
|) ; |

Description
Creates a 3D group.

Pre-conditions
None

Parameters

pGroup	[out]	Newly created 3D group object.
numInterfaces	[in]	Number of interface that the object is requested to support (not including implicit interfaces).
pInterfaceIds	[in]	Array of numInterfaces interface IDs, which the object should support. This parameter is ignored if numInterfaces is zero.
pInterfaceRequired	[in]	Array of numInterfaces flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if numInterfaces is zero.

Return value
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_MEMORY_FAILURE
- SL_RESULT_FEATURE_UNSUPPORTED

Comments
None

See also
3D Group Object [section 7.1]
CreateOutputMix

```c
SLresult (*CreateOutputMix) (  
    SLEngineItf self,  
    SLObjectItf * pMix,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates an output mix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMix</td>
<td>[out]</td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in]</td>
</tr>
<tr>
<td>pInterfaceIds</td>
<td>[in]</td>
</tr>
<tr>
<td>pInterfaceRequired</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>Output Mix Object [section 7.9]</td>
</tr>
</tbody>
</table>
CreateMetadataExtractor

```c
SLresult (*CreateMetadataExtractor) (  
    SLEngineItf self,  
    SLObjectItf * pMetadataExtractor,  
    SLDataSource * pDataSource,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);  
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates a Metadata Extractor object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

Parameters

- **pMetadataExtractor** [out] Newly created metadata extractor object.
- **pDataSource** [in] Pointer to the structure specifying the audio data source (such as a media file). Only local data sources are mandated to be supported. Must be non-NULL.
- **numInterfaces** [in] Number of interfaces that the object is requested to support (not including implicit interfaces).
- **pInterfaceIds** [in] Array of `numInterfaces` interface IDs, which the object should support. This parameter is ignored if `numInterfaces` is zero.
- **pInterfaceRequired** [in] Array of `numInterfaces` flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated. This parameter is ignored if `numInterfaces` is zero.
CreateMetadataExtractor

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_IO_ERROR</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTENT_CORRUPTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTENT_UNSUPPORTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTENT_NOT_FOUND</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PERMISSION_DENIED</td>
</tr>
</tbody>
</table>

| **Comments** | None |

| **See also** | Metadata Extractor Object [see section 7.7] |

CreateExtensionObject

```c
SLresult (*CreateExtensionObject) (  
    SLEngineItf self,  
    SLObjectItf * pObject,  
    void * pParameters,  
    SLuint32 objectID,  
    SLuint32 numInterfaces,  
    const SLInterfaceID * pInterfaceIds,  
    const SLboolean * pInterfaceRequired  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Creates an object. This method is used for extension objects defined externally from the specification. Objects defined by the specification must be created by the specific creation methods in the engine interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>As documented by extension.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pObject</td>
<td>[out] Newly-created object.</td>
</tr>
</tbody>
</table>
CreateExtensionObject

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pParameters</td>
<td>[in]</td>
<td>Pointer to a structure specifying the parameters used for creating the object.</td>
</tr>
<tr>
<td>objectID</td>
<td>[in]</td>
<td>A valid object ID.</td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in]</td>
<td>Number of interfaces that the object is requested to support (not including implicit interfaces).</td>
</tr>
<tr>
<td>pInterfaceIds</td>
<td>[in]</td>
<td>Array of numInterfaces interface IDs, which the object should support.</td>
</tr>
<tr>
<td>pInterfaceRequired</td>
<td>[in]</td>
<td>Array of numInterfaces flags, each specifying whether the respective interface is required on the object or optional. A required interface will fail the creation of the object if it cannot be accommodated.</td>
</tr>
</tbody>
</table>
CreateExtensionObject

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT Preconditions_Violated</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT Parameter_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT MEMORY_FAILURE</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_IO_ERROR</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT PERMISSION_DENIED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT FEATURE_UNSUPPORTED</td>
</tr>
</tbody>
</table>

| Comments | If the engine fails to create the object due to lack of memory or resources it will return the SL_RESULT_MEMORY_FAILURE or the SL_RESULT_RESOURCE_ERROR error, respectively. The ObjectID and the data structure pointed to by pParameters should be defined by an extension. When ObjectID is not valid the method will return SL_RESULT FEATURE_UNSUPPORTED. |

| See also | Section 3.5 |
QueryNumSupportedInterfaces

```
SLresult (*QueryNumSupportedInterfaces) (  
    SLEngineItf self,  
    SLuint32 objectID,  
    SLuint32 * pNumSupportedInterfaces
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the number of supported interfaces available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>objectID</td>
<td>[in]</td>
</tr>
<tr>
<td>pNumSupportedInterfaces</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
</tbody>
</table>
QuerySupportedInterfaces

```
SLresult (*QuerySupportedInterfaces) (  
    SLEngineItf self,  
    SLuint32 objectID,  
    SLuint32 index,  
    SLInterfaceID * pInterfaceId  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the supported interfaces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>The number of supported interfaces will include both mandated and optional interfaces available for the object.</td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
</tbody>
</table>

![Parameters Table](parameters_table.png)

![See also](see_also.png)
QueryNumSupportedExtensions

```
SLresult (*QueryNumSupportedExtensions) (  
    SLEngineItf self,  
    SLuint32 * pNumExtensions  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the number of supported extensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pNumExtensions [out] Identifies the number of supported extensions by this implementation.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The number of supported extensions will include both standardized extensions listed in Khronos registry and vendor-specific extensions.</td>
</tr>
<tr>
<td>See also</td>
<td>QuerySupportedExtensions()</td>
</tr>
</tbody>
</table>
QuerySupportedExtension

```c
SLresult (*QuerySupportedExtension) (  
  SLEngineItf self,  
  SLuint32 index,  
  SLchar * pExtensionName,  
  SLint16 * pNameLength
);
```

Description

Gets the name of the extension supported by the implementation based on the given index.

Pre-conditions

None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>[in]</td>
<td>The index of the extension. Must be [0, numExtensions-1].</td>
</tr>
<tr>
<td>pExtensionName</td>
<td>[out]</td>
<td>The name of the supported extension, as defined in the Khronos registry (http://www.khronos.org/registry/) or in vendor-specific documentation. The length of the needed char array should be first figured out from pNameLength out parameter by calling this method with pExtensionName as null.</td>
</tr>
<tr>
<td>pNameLength</td>
<td>[in/out]</td>
<td>As an output, specifies the length of the name including the terminating NULL. As an input, specifies the length of the given pExtensionName char array (ignored if pExtensionName is NULL).</td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_BUFFER_INSUFFICIENT

Comments

If the given length is smaller than the needed size SL_RESULT_BUFFER_INSUFFICIENT is returned and only data of the given size will be written; however, no invalid strings are written. That is, the null-terminator always exists and multibyte characters are not cut in the middle.

See Also

QueryNumSupportedExtensions(), IsExtensionSupported()
IsExtensionSupported

```c
SLresult (*IsExtensionSupported) (    SLEngineItf self,    const SLchar * pExtensionName,    SLboolean * pSupported
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries if the given extension is supported by the implementation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pSupported</td>
<td>[out] SL_BOOLEAN_TRUE if the given extension is supported; SL_BOOLEAN_FALSE if it is not supported.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>This is an alternative method to be used instead of QueryNumSupportedExtensions() and QuerySupportedExtension() to query the availability of just one known extension.</td>
</tr>
<tr>
<td>See Also</td>
<td>None</td>
</tr>
</tbody>
</table>
8.18 SLEngineCapabilitiesItf

Description

Different implementations of OpenSL ES can support one or more of the three profiles (Phone, Music and Game). Further, these implementations can also vary in their ability to support simultaneous 2D and 3D sampled audio voices, as well as the MIDI polyphony level and the ability to treat the output of the MIDI synthesizer(s) as 3D sound source(s). For these reasons, an interface to query the capabilities of the OpenSL ES engine is necessary. The SLEngineCapabilitiesItf interface provides this functionality.

Version 1.0 of OpenSL ES mandates support for “at least one” MIDI synthesizer. This does not prevent implementations from supporting more than one synthesizer. Therefor, this interface allows querying of the number of MIDI synthesizers supported.

This interface is supported on the engine [see section 7.4] object.

See section B.7.1 for an example using this interface.

Prototype

```c
extern const SLInterfaceID SL_IID_ENGINECAPABILITIES;

struct SLEngineCapabilitiesItf;
typedef const struct SLEngineCapabilitiesItf_* const * SLEngineCapabilitiesItf;

struct SLEngineCapabilitiesItf_ {
    SLresult (*QuerySupportedProfiles) (SLEngineCapabilitiesItf self, SLuint16 *pProfilesSupported);
    SLresult (*QueryAvailableVoices) (SLEngineCapabilitiesItf self, SLuint16 voiceType, SLint16 *pNumMaxVoices, SLboolean *pIsAbsoluteMax, SLint16 *pNumFreeVoices);
    SLresult (*QueryNumberOfMIDISynthesizers) (SLEngineCapabilitiesItf self, SLint16 *pNumMIDIsynthesizers);
};
```
SLresult (*QueryAPIVersion) (
 SLEngineCapabilitiesItf self,
 SLint16 *pMajor,
 SLint16 *pMinor,
 SLint16 *pStep
);
SLresult (*QueryLEDCapabilities) (
 SLEngineCapabilitiesItf self,
 SLuint32 *pIndex,
 SLuint32 *pLEDDeviceID,
 SLLEDDescriptor *pDescriptor
);
SLresult (*QueryVibraCapabilities) (
 SLEngineCapabilitiesItf self,
 SLuint32 *pIndex,
 SLuint32 *pVibraDeviceID,
 SLVibraDescriptor *pDescriptor
);
SLresult (*IsThreadSafe) (
 SLEngineCapabilitiesItf self,
 SLboolean *pIsThreadSafe
);
};

Interface ID

8320d0a0-ddd5-11db-a1b1-0002a5d5c51b

Defaults

None (the interface is stateless).
Methods

QuerySupportedProfiles

```c
SLresult (*QuerySupportdProfiles)(
    SLEngineCapabilitiesIt self,
    SLuint16 *pProfilesSupported
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the supported profiles of the OpenSL ES API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pProfilesSupported</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td></td>
</tr>
<tr>
<td>The return value can be one of the following:</td>
<td></td>
</tr>
<tr>
<td><code>SL_RESULT_SUCCESS</code></td>
<td></td>
</tr>
<tr>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See Also</td>
<td>Section 9.2.36 (SL_PROFILE macros)</td>
</tr>
</tbody>
</table>
QueryAvailableVoices

```c
SLresult (*QueryAvailableVoices)(
    SLEngineCapabilitiesItf self,
    SLuint16 voiceType,
    SLuint16 *pNumMaxVoices,
    SLboolean *pIsAbsoluteMax,
    SLuint16 *pNumFreeVoices
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the number of simultaneous free voices currently available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>voiceType</code></td>
<td>[in] One of the voice types listed in the <code>SL_VOICETYPE</code> macros.</td>
</tr>
<tr>
<td><code>pNumMaxVoices</code></td>
<td>[out] Maximum number of simultaneous voices of type "voiceType" supported by the implementation. For MIDI, it refers to the maximum polyphony level.</td>
</tr>
<tr>
<td><code>pIsAbsoluteMax</code></td>
<td>[out] <code>SL_BOOLEAN_TRUE</code> if the <code>numMaxVoices</code> returned is an absolute maximum that the device cannot exceed in any circumstances. This can be caused, for example, by hardware limitations in hardware-based implementations. <code>SL_BOOLEAN_FALSE</code> if the <code>numMaxVoices</code> returned specifies the maximum number of voices that the application is recommended to have active simultaneously (as might be recommended for a typical game playing situation when graphics rendering (2D or 3D) and reverberation are also taking place). The implementation does not guarantee that this number of voices may be active simultaneously under all conditions; it is just a hint to the application. (It may even be possible for more than this number of voices to be active simultaneously, but this is not guaranteed, either.) <code>SL_BOOLEAN_FALSE</code> is typically returned in software-based implementations.</td>
</tr>
</tbody>
</table>
QueryAvailableVoices

| pNumFreeVoices | [out] | Number of voices of type "voiceType" currently available. For MIDI, it refers to the currently available polyphony level. Typically, “numFreeVoices” is expected to be less than or equal to “numMaxVoices”, depending on current resource usage in the system. |

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
None

See Also
SL_VOICETYPE macros [see section 9.2.47]

QueryNumberOfMIDISynthesizers

```c
SLresult (*QueryNumberOfMIDISynthesizers)(
    SLEngineCapabilitiesItf self,
    SLint16 *pNumMIDISynthesizers
);
```

Description
Queries the number of MIDI synthesizers supported by the implementation.

Pre-conditions
None

Parameters
- **pNumMIDISynthesizers** [out] Number of MIDI synthesizers supported. Must be at least 1.

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
OpenSL ES v1.0 mandates support for at least one synthesizer. It does not prevent implementations from supporting more than one.

See Also
None
QueryAPIVersion

```c
SLresult (*QueryAPIVersion) (  
    SLEngineCapabilitiesItf self,  
    SLint16 *pMajor,  
    SLint16 *pMinor,  
    SLint16 *pStep  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the version of the OpenSL ES API implementation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMajor</td>
<td>[out] Major version number.</td>
</tr>
<tr>
<td>pMinor</td>
<td>[out] Minor version number.</td>
</tr>
<tr>
<td>pStep</td>
<td>[out] Step within the minor version number.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>For 1.0.0 implementations of OpenSL ES, this method should return 1, 0, and 0 for the pMajor, pMinor, and pStep fields, respectively.</td>
</tr>
</tbody>
</table>
QueryLEDCapabilities

```
SLresult (*QueryLEDCapabilities) (  
    SLEngineCapabilitiesItf self,  
    SLuint32 *pIndex,  
    SLuint32 *pLEDDeviceID,  
    SLLEDDescriptor *pDescriptor  
);
```

Description
Queries the LED array device for its capabilities.

Pre-conditions
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pIndex</code></td>
<td>[in/out] As an input, specifies which LED array device to obtain the capabilities of, the supported range is ([0, n]), where (n) is the number of LED array devices available (ignored if <code>pDescriptor</code> is NULL). As an output, specifies the number of LED array devices available in the system. Returns 0 if no LED array devices are available.</td>
</tr>
<tr>
<td><code>pLEDDeviceID</code></td>
<td>[in/out] If <code>pIndex</code> is non-NULL then returns the LED array device ID corresponding to LED array device <code>pIndex</code>. If <code>pIndex</code> is NULL then, as an input, specifies which LED array device to obtain the capabilities of (<code>SL_DEFAULTDEVICEID_LED</code> can be used to determine the default LED array’s capabilities).</td>
</tr>
<tr>
<td><code>pDescriptor</code></td>
<td>[out] Structure defining the capabilities of the LED array device.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
| **Comments** | An application can determine the number of LED array devices by calling this method with `pDescriptor` set to NULL and examining `pIndex`. The application can then determine the capabilities of all the LED array devices by calling this method multiple times with `pIndex` pointing to each different index from 0 up to one less than the number of LED array devices. An LED array device is selected using the `CreateLEDDevice()` method. |
| **See also** | `SL_DEFAULTDEVICEID_LED` [see section 9.2.10]](] |
QueryVibraCapabilities

```c
SLresult (*QueryVibraCapabilities) (  
    SLEngineCapabilitiesItf self,  
    SLuint32 *pIndex,  
    SLuint32 *pVibraDeviceID,  
    SLVibraDescriptor *pDescriptor  
);
```

Description
Queries the vibration device for its capabilities.

Pre-conditions
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIndex</td>
<td>[in/out]</td>
<td>As an input, specifies which vibration device to obtain the capabilities of, the supported range is [0, n), where n is the number of vibration devices available (ignored if pDescriptor is NULL). As an output, specifies the number of vibration devices available in the system. Returns 0 if no vibration devices are available.</td>
</tr>
<tr>
<td>pVibraDeviceId</td>
<td>[in/out]</td>
<td>If pIndex is non-NULL then returns the vibration device ID corresponding to vibration device pIndex. If pIndex is NULL then, as an input, specifies which vibration device to obtain the capabilities of (SL_DEFAULTDEVICEID_VIBRA can be used to determine the default vibration device's capabilities).</td>
</tr>
<tr>
<td>pDescriptor</td>
<td>[out]</td>
<td>Structure defining the capabilities of the vibration device.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
An application can determine the number of vibration devices by calling this method with pDescriptor set to NULL and examining pIndex. The application can then determine the capabilities of all the vibration devices by calling this method multiple times with pIndex pointing to each different indexes from 0 up to one less than the number of vibration devices.

A vibration device is selected using the CreateVibraDevice() method.

See also
SL_DEFAULTDEVICEID_VIBRA [see section 9.2.10]
IsThreadSafe

```c
SLresult (*IsThreadSafe) (  
    SLEngineCapabilitiesItf self,  
    SLboolean *pIsThreadSafe  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the thread-safety status of the OpenSL ES implementation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pIsThreadSafe</td>
<td>[out] SL_BOOLEAN_TRUE if the implementation is thread-safe; otherwise SL_BOOLEAN_FALSE.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
</tbody>
</table>
8.19 SLEnvironmentalReverbItf

Description

A sound generated within a particular acoustic environment typically reaches a listener via many different paths. The listener first hears the direct sound from the sound source itself. Somewhat later, he or she hears a number of discrete echoes caused by sound bouncing once off nearby walls, the ceiling or the floor. These sounds are known as *early reflections*. Later still, as sound waves arrive after undergoing more and more reflections, the individual reflections become indistinguishable from one another and the listener hears continuous *reverberation* that decays over time. This combination of direct, reflected and reverberant sound is illustrated in the diagram below. Please note that the reflections level and reverb level are total (integrated) energy levels of early reflections and late reverberation, respectively, not peak levels.

![Reflections and reverberation](image)

Figure 33: Reflections and reverberation

This interface allows an application to control these properties in a global reverb environment. The reverb controls exposed by this interface are based on the I3DL2 guidelines [I3DL2], with the restriction that the high-frequency reference level is fixed at 5 kHz.

When this interface is exposed on the Output Mix, it acts as an auxiliary effect; for reverb to be applied to a player's output, the SLEffectSendItf interface [see section 8.14] must be exposed on the player.
The following restriction must be adhered to when exposing this interface:

- It is not possible to expose this interface while the SLInterfaceID interface of the same object is already exposed.

This interface is supported on the Output Mix [see section 7.9] object.

See sections B.6.1 and C.4 for examples using this interface.

High Frequency Attenuation

When a sound is reflected against objects within a room, its high frequencies typically tail off faster than its low frequencies. This interface exposes control over how much attenuation is applied to the high frequency components of the reverb and reflections. The attenuation is controlled using a setting that specifies the attenuation level (in milibels) of the frequencies above 5 kHz (high frequencies) relative to low frequencies. This allows different implementations to use different filter designs (such as one-pole, two-pole) for the internal low-pass filter.

Prototype

```c
extern const SLInterfaceID SL_IID_ENVIRONMENTALREVERB;

struct SLEnvironmentalReverbItf_;
typedef const struct SLEnvironmentalReverbItf_ * const * SLEnvironmentalReverbItf;

struct SLEnvironmentalReverbItf_ {
    SLresult (*SetRoomLevel) (SLEnvironmentalReverbItf self, SLmillibel room);
    SLresult (*GetRoomLevel) (SLEnvironmentalReverbItf self, SLmillibel *pRoom);
    SLresult (*SetRoomHFLevel) (SLEnvironmentalReverbItf self, SLmillibel roomHF);
    SLresult (*GetRoomHFLevel) (SLEnvironmentalReverbItf self, SLmillibel *pRoomHF);
    SLresult (*SetDecayTime) (SLEnvironmentalReverbItf self, SLmillisecond decayTime);
    SLresult (*GetDecayTime) (SLEnvironmentalReverbItf self, SLmillisecond *pDecayTime);
};
```
SLresult (*SetDecayHFRatio) (
 SLEnvironmentalReverbItf self,
 SLpermille decayHFRatio
);
SLresult (*GetDecayHFRatio) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDecayHFRatio
);
SLresult (*SetReflectionsLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel reflectionsLevel
);
SLresult (*GetReflectionsLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pReflectionsLevel
);
SLresult (*SetReflectionsDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond reflectionsDelay
);
SLresult (*GetReflectionsDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pReflectionsDelay
);
SLresult (*SetReverbLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel reverbLevel
);
SLresult (*GetReverbLevel) (
 SLEnvironmentalReverbItf self,
 SLmillibel *pReverbLevel
);
SLresult (*SetReverbDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond reverbDelay
);
SLresult (*GetReverbDelay) (
 SLEnvironmentalReverbItf self,
 SLmillisecond *pReverbDelay
);
SLresult (*SetDiffusion) (
 SLEnvironmentalReverbItf self,
 SLpermille diffusion
);
SLresult (*GetDiffusion) (
 SLEnvironmentalReverbItf self,
 SLpermille *pDiffusion
);
SLresult (*SetDensity) (
 SLEnvironmentalReverbItf self,
 SLpermille density
);
OpenSL ES 1.0 Specification

SLresult (*GetDensity) {
 SLEnvironmentalReverbItf self,
 SLpermille *pDensity
};
SLresult (*SetEnvironmentalReverbProperties) {
 SLEnvironmentalReverbItf self,
 const SLEnvironmentalReverbSettings *pProperties
};
SLresult (*GetEnvironmentalReverbProperties) {
 SLEnvironmentalReverbItf self,
 SLEnvironmentalReverbSettings *pProperties
};

Interface ID
c2e5d5f0-94bd-4763-9cac-4e23-4d06839e

Defaults

Room level: SL_MILLIBEL_MIN mB
Room HF level: 0 mB
Decay time: 1000 ms
Decay HF ratio: 500 ‰
Reflections delay: 20 ms
Reflections level: SL_MILLIBEL_MIN mB
Reverb level: SL_MILLIBEL_MIN mB
Reverb delay: 40 ms
Diffusion: 1000 ‰
Density: 1000 ‰
Methods

SetRoomLevel

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the master volume level of the environmental reverb effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Room</td>
<td>[in] Room level in millibels. The valid range is [SL_MILLIBEL_MIN, 0].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

GetRoomLevel

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the master volume level of the environmental reverb effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>pRoom</td>
<td>[out] Pointer to a location for the room level in millibels. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetRoomHFLevel

```c
SLresult (*SetRoomHFLevel) (  
    SLEnvironmentalReverbItf self,  
    SLmillibel roomHF  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the volume level at 5 kHz relative to the volume level at low frequencies of the overall reverb effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>roomHF</td>
<td>[in] High frequency attenuation level in millibels. The valid range is $[SL_MILLIBEL_MIN, 0]$.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>This controls a low-pass filter that will reduce the level of the high-frequency.</td>
</tr>
</tbody>
</table>

GetRoomHFLevel

```c
SLresult (*GetRoomHFLevel) (  
    SLEnvironmentalReverbItf self,  
    SLmillibel *pRoomHF  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the room HF level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pRoomHF</td>
<td>[out] Pointer to a location for the room HF level in millibels. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetDecayTime

Function Definition:

```
SLresult (*SetDecayTime) (  
    SLEnvironmentalReverbItf self,  
    SLmillisecond decayTime  
);  
```

Description:
Sets the time taken for the level of reverberation to decay by 60 dB.

Pre-conditions:
None

Parameters:
- `decayTime` [in] Decay time in milliseconds. The valid range is `[100, 20000]`.

Return value:
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_CONTROL_LOST`

Comments:
None

GetDecayTime

Function Definition:

```
SLresult (*GetDecayTime) (  
    SLEnvironmentalReverbItf self,  
    SLmillisecond *pDecayTime  
);  
```

Description:
Gets the decay time.

Pre-conditions:
None

Parameters:
- `pDecayTime` [out] Pointer to a location for the decay time in milliseconds. This must be non-NULL.

Return value:
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

Comments:
None
SetDecayHFRatio

```c
SLresult (*SetDecayHFRatio) (  
    SLEnvironmentalReverbItf self,  
    SLpermille decayHFRatio  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the ratio of high frequency decay time (at 5 kHz) relative to the decay time at low frequencies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>decayHFRatio</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

GetDecayHFRatio

```c
SLresult (*GetDecayHFRatio) (  
    SLEnvironmentalReverbItf self,  
    SLpermille *pDecayHFRatio  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the ratio of high frequency decay time (at 5 kHz) relative to low frequencies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pDecayHFRatio</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetReflectionsLevel

```
SLresult (*SetReflectionsLevel) (  
  SLEnvironmentalReverbItf self,  
  SLmillibel reflectionsLevel  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the volume level of the early reflections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>reflectionsLevel</code></td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_CONTROL_LOST</code></td>
</tr>
<tr>
<td>Comments</td>
<td>This level is combined with the overall room level (set using SetRoomLevel).</td>
</tr>
</tbody>
</table>

GetReflectionsLevel

```
SLresult (*GetReflectionsLevel) (  
  SLEnvironmentalReverbItf self,  
  SLmillibel *pReflectionsLevel  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the reflections level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>pReflectionsLevel</code></td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetReflectionsDelay

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the delay time for the early reflections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>reflectionsDelay</td>
<td>[in] Reflections delay in milliseconds. The valid range is [0, 300].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>This method sets the time between when the direct path is heard and when the first reflection is heard.</td>
</tr>
</tbody>
</table>

GetReflectionsDelay

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the reflections delay.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pReflectionsDelay</td>
<td>[out] Pointer to a location to receive reflections delay in milliseconds. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetReverbLevel

```c
SLresult (*SetReverbLevel) (  
    SLEnvironmentalReverbItf self,  
    SLmillibel reverbLevel  
);  
```

Description
Sets the volume level of the late reverberation.

Pre-conditions
None

Parameters
- **reverbLevel** [in] Reverb level in millibels. The valid range is `[SL_MILLIBEL_MIN, 2000]`.

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_CONTROL_LOST`

Comments
This level is combined with the overall room level (set using `SetRoomLevel`).

GetReverbLevel

```c
SLresult (*GetReverbLevel) (  
    SLEnvironmentalReverbItf self,  
    SLmillibel *pReverbLevel  
);  
```

Description
Gets the reverb level.

Pre-conditions
None

Parameters
- **pReverbLevel** [out] Pointer to a location for the reverb level in millibels. This must be non-NULL.

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

Comments
None
SetReverbDelay

```c
SLresult (*SetReverbDelay) (  
    SLEnvironmentalReverbItf self,  
    SLmillisecond reverbDelay  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the time between the first reflection and the reverberation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>reverbDelay</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

GetReverbDelay

```c
SLresult (*GetReverbDelay) (  
    SLEnvironmentalReverbItf self,  
    SLmillisecond *pReverbDelay  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the reverb delay length.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pReverbDelay</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetDiffusion

```c
SLresult (*SetDiffusion) (  
    SLEnvironmentalReverbItf self,  
    SLpermille diffusion  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the echo density in the late reverberation decay.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>diffusion [in] Diffusion specified using a permille scale. The valid range is [0, 1000]. A value of 1000 ‰ indicates a smooth reverberation decay. Values below this level give a more grainy character.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>The scale should approximately map linearly to the perceived change in reverberation.</td>
</tr>
</tbody>
</table>

GetDiffusion

```c
SLresult (*GetDiffusion) (  
    SLEnvironmentalReverbItf self,  
    SLpermille *pDiffusion  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the level of diffusion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pDiffusion [out] Pointer to a location for the diffusion level. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetDensity

```c
SLresult (*SetDensity) (
    SLEnvironmentalReverbItf self,
    SLpermille density
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Controls the modal density of the late reverberation decay.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>density [in] Density specified using a permille scale. The valid range is [0, 1000]. A value of 1000 ‰ indicates a natural sounding reverberation. Values below this level produce a more colored effect.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>The scale should approximately map linearly to the perceived change in reverberation. A lower density creates a hollow sound that is useful for simulating small reverberation spaces such as bathrooms.</td>
</tr>
</tbody>
</table>

GetDensity

```c
SLresult (*GetDensity) (
    SLEnvironmentalReverbItf self,
    SLpermille *pDensity
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the density level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pDensity [out] Pointer to a location for the density level. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetEnvironmentalReverbProperties

```c
SLresult (*SetEnvironmentalReverbProperties) (  
    SLEnvironmentalReverbItf self,  
    const SLEnvironmentalReverbSettings *pProperties
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets all the environment properties in one method call.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pProperties</code></td>
<td>[in] Pointer to a structure containing all the environment reverb properties [see section 9.1.17]. All the properties in the structure must be within the ranges specified for each of the properties in the “set” methods in this interface. This must be non-NULL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
<th>This can be used with the environmental reverb presets definitions. For example:</th>
</tr>
</thead>
</table>
| | SLEnvironmentalReverbSettings ReverbSettings =
| | SL_I3DL2_ENVIRONMENT_PRESET_BATHROOM;
| | /* Change reverb environment to bathroom. */
| | pReverb->SetEnvironmentalReverbProperties(pReverb,
| | &ReverbSettings); |

Developers are advised to use this method when changing more than one parameter at a given time as this reduces the amount of unnecessary processing.
GetEnvironmentalReverbProperties

SLresult (*GetEnvironmentalReverbProperties) (SLEnvironmentalReverbItf self, SLEnvironmentalReverbSettings *pProperties);

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets all the environment’s properties.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pProperties [in] Pointer to a structure to receive all the environmental reverb properties [see section 9.1.17]. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
8.20 SLEqualizerItf

Description

SLEqualizerItf is an interface for manipulating the equalization settings of a media object. The equalizer (EQ) can be set up in two different ways: by setting individual frequency bands, or by using predefined presets.

The preset settings can be directly taken into use with the method UsePreset(). The current preset can be queried with the method GetPreset(). If none of the presets is set, SL_EQUALIZER_UNDEFINED will be returned. SL_EQUALIZER_UNDEFINED will also be returned when a preset has been set, but the equalizer settings have been altered later with SetBandLevel(). Presets have names that can be used in the user interface.

There are methods for getting and setting individual EQ-band gains (SetBandLevel() and GetBandLevel()), methods for querying the number of the EQ-bands available (GetNumberOfBands()) and methods for querying their center frequencies (GetCenterFreq()).

The gains in this interface are defined in millibels (hundredths of a decibel), but it has to be understood that many devices contain a Dynamic Range Control (DRC) system that will affect the actual effect and therefore the value in millibels will affect as a guideline rather than as a strict rule.

This interface affects different parts of the audio processing chain, depending on which object the interface is exposed. If this interface is exposed on an Output Mix object, the effect is applied to the output mix. If this interface is exposed on a Player object, it is applied to the Player’s output only. For more information, see section 4.5.1.

This interface is supported on the Output Mix [see section 7.9] object.

See section B.6.2 for an example using this interface.

Prototype

extern const SLInterfaceID SL_IID_EQUALIZER;

struct SLEqualizerItf;
typedef const struct SLEqualizerItf * const * SLEqualizerItf;

struct SLEqualizerItf_ {
 SLresult (*SetEnabled)(
 SLEqualizerItf self,
 SLboolean enabled
);
SLresult (*IsEnabled)(
 SLEqualizerItf self,
 SLboolean *pEnabled
);
SLresult (*GetNumberOfBands)(
 SLEqualizerItf self,
 SLuint16 *pNumBands
);
SLresult (*GetBandLevelRange)(
 SLEqualizerItf self,
 SLmillibel *pMin,
 SLmillibel *pMax
);
SLresult (*SetBandLevel)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmillibel level
);
SLresult (*GetBandLevel)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmillibel *pLevel
);
SLresult (*GetCenterFreq)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmilliHertz *pCenter
);
SLresult (*GetBandFreqRange)(
 SLEqualizerItf self,
 SLuint16 band,
 SLmilliHertz *pMin,
 SLmilliHertz *pMax
);
SLresult (*GetBand)(
 SLEqualizerItf self,
 SLmilliHertz frequency,
 SLuint16 *pBand
);
SLresult (*GetCurrentPreset)(
 SLEqualizerItf self,
 SLuint16 *pPreset
);
SLresult (*UsePreset)(
 SLEqualizerItf self,
 SLuint16 index
);
SLresult (*GetNumberOfPresets)(
 SLEqualizerItf self,
 SLuint16 *pNumPresets
);
SLresult (*GetPresetName)(
 SLEqualizerItf self,
 SLuint16 index,
 const SLchar ** ppName
);
};

Interface ID

0bed4300-ddd6-11db-8f34-0002a5d5c51b

Defaults

Enabled: false (disabled)

All band levels: 0 mB (flat response curve)

Preset: SL_EQUALIZER_UNDEFINED (no preset)

Methods

<table>
<thead>
<tr>
<th>SetEnabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLresult (*SetEnabled)(</td>
</tr>
<tr>
<td>SLEqualizerItf self,</td>
</tr>
<tr>
<td>SLboolean enabled</td>
</tr>
<tr>
<td>);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>enabled [in] True to turn on the effect; false to switch it off.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
IsEnabled

```c
SLresult (*IsEnabled)(
    SLEqualizerItf self,
    SLboolean *pEnabled
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the enabled status of the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pEnabled [out] True if the effect is on, otherwise false. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

GetNumberOfBands

```c
SLresult (*GetNumberOfBands)(
    SLEqualizerItf self,
    SLuint16 *pNumBands
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the number of frequency bands that the equalizer supports. A valid equalizer must have at least two bands.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pNumBands [out] Number of frequency bands that the equalizer supports. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
GetBandLevelRange

```c
SLresult (*GetBandLevelRange)(
    SLEqualizerItf self,
    SLmillibel *pMin,
    SLmillibel *pMax
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the minimum and maximum band levels supported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconditions</td>
<td>None</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMin</td>
<td>[out] Minimum supported band level in millibels.</td>
</tr>
<tr>
<td>pMax</td>
<td>[out] Maximum supported band level in millibels.</td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments

The range returned by `GetBandLevelRange` must at least include 0 mB. The application may pass NULL as one of the [out] parameters to find out only the other one’s value.
SetBandLevel

```c
SLresult (*SetBandLevel)(
    SLEqualizerItf self,
    SLuint16 band,
    SLmillibel level
);
```

Description
Sets the given equalizer band to the given gain value.

Pre-conditions
None

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>band</td>
<td>[in]</td>
<td>Frequency band that will have the new gain. The numbering of the bands starts from 0 and ends at (number of bands – 1).</td>
</tr>
<tr>
<td>level</td>
<td>[in]</td>
<td>New gain in millibels that will be set to the given band. GetBandLevelRange() will define the maximum and minimum values.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_CONTROL_LOST

Comments
None
GetBandLevel

```c
SLresult (*GetBandLevel)(
    SLEqualizerItf self,
    SLuint16 band,
    SLmillibel *pLevel
);
```

Description
Gets the gain set for the given equalizer band.

Pre-conditions
None

Parameters
- `band` [in] Frequency band whose gain is requested. The numbering of the bands starts from 0 and ends at (number of bands – 1).
- `pLevel` [out] Gain in millibels of the given band. This must be non-NULL.

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
None

GetCenterFreq

```c
SLresult (*GetCenterFreq)(
    SLEqualizerItf self,
    SLuint16 band,
    SLmilliHertz *pCenter
);
```

Description
Gets the center frequency of the given band.

Pre-conditions
None

Parameters
- `band` [in] Frequency band whose center frequency is requested. The numbering of the bands starts from 0 and ends at (number of bands – 1).
- `pCenter` [out] The center frequency in milliHertz. This must be non-NULL.

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
None
GetBandFreqRange

```
SLresult (*GetBandFreqRange)(
    SLEqualizerItf self,
    SLuint16 band,
    SLmilliHertz *pMin,
    SLmilliHertz *pMax
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the frequency range of the given frequency band.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>band</code> <code>[in]</code></td>
<td>Frequency band whose frequency range is requested. The numbering of the band that can be used with this method starts from 0 and ends at (number of bands – 1).</td>
</tr>
<tr>
<td><code>pMin</code> <code>[out]</code></td>
<td>The minimum frequency in milliHertz.</td>
</tr>
<tr>
<td><code>pMax</code> <code>[out]</code></td>
<td>The maximum frequency in milliHertz.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>The exposed band ranges do not overlap (physically they many times do, but the virtual numbers returned here do not) - this is in order to simplify the applications that want to use this information for graphical representation of the EQ.</td>
</tr>
<tr>
<td></td>
<td>If shelving filters are used in the lowest and the highest band of the equalizer, the lowest band returns 0 mHz as the minimum frequency and the highest band returns the <code>SL_MILLIHertz_MAX</code> as the maximum frequency.</td>
</tr>
<tr>
<td></td>
<td>The application may pass NULL as one of the <code>[out]</code> parameters to find out only the other one’s value.</td>
</tr>
</tbody>
</table>
GetBand

```c
SLresult (*GetBand)(
    SLEqualizerItf self,
    SLmilliHertz frequency,
    SLuint16 *pBand
);
```

Description

Gets the band that has the most effect on the given frequency. If no band has an effect on the given frequency, **SL_EQUALIZER_UNDEFINED** is returned.

Pre-conditions

None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>[in] Frequency in milliHertz which is to be equalized via the returned band</td>
<td></td>
</tr>
<tr>
<td>pBand</td>
<td>[out] Frequency band that has most effect on the given frequency or SL_EQUALIZER_UNDEFINED if no band has an effect on the given frequency. This must be non-NULL.</td>
<td></td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- **SL_RESULT_SUCCESS**
- **SL_RESULT_PARAMETER_INVALID**

Comments

None

GetCurrentPreset

```c
SLresult (*GetCurrentPreset)(
    SLEqualizerItf self,
    SLuint16 *pPreset
);
```

Description

Gets the current preset.

Pre-conditions

None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pPreset</td>
<td>[out] Preset that is set at the moment. If none of the presets are set, SL_EQUALIZER_UNDEFINED will be returned. This must be non-NULL.</td>
<td></td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- **SL_RESULT_SUCCESS**
- **SL_RESULT_PARAMETER_INVALID**

Comments

None
UsePreset

```c
SLresult (*UsePreset)(
    SLEqualizerItf self,
    SLuint16 index
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the equalizer according to the given preset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>index [in] New preset that will be taken into use. The valid range is [0, number of presets-1].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

GetNumberOfPresets

```c
SLresult (*GetNumberOfPresets)(
    SLEqualizerItf self,
    SLuint16 *pNumPresets
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the total number of presets the equalizer supports. The presets will have indices [0, number of presets-1].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pNumPresets [out] Number of presets the equalizer supports. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
GetPresetName

```c
SLresult (*GetPresetName)(
    SLEqualizerItf self,
    SLuint16 index,
    const SLchar ** ppName
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the preset name based on the index.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>[in] Index of the preset. The valid range is [0, number of presets-1].</td>
</tr>
<tr>
<td>ppName</td>
<td>[out] A non-empty, null terminated string containing the name of the given preset. The character coding is UTF-8. This must be non-NULL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td></td>
</tr>
</tbody>
</table>

| Comments | None |
8.21 SLLEDArrayItf

Description

SLLEDArrayItf is used to activate / deactivate the LEDs, as well as to set the color of LEDs, if supported.

SLLEDArrayItf uses the following state model per LED, which indicates whether the LED is on or off:

![Figure 34: SLLEDArrayItf state model]

This interface is supported on the LED Array [see section 8.21] object.
Prototype

```c
extern const SLInterfaceID SL_IID_LED;

struct SLLEDArrayItf_;  
typedef const struct SLLEDArrayItf_ * const * SLLEDArrayItf;

struct SLLEDArrayItf_ {
    SLresult (*ActivateLEDArray) (  
        SLLEDArrayItf self,  
        SLuint32 lightMask
    );
    SLresult (*IsLEDArrayActivated) (  
        SLLEDArrayItf self,  
        SLuint32 *lightMask
    );
    SLresult (*SetColor) (  
        SLLEDArrayItf self,  
        SLuint8 index,  
        const SLHSL *color
    );
    SLresult (*GetColor) (  
        SLLEDArrayItf self,  
        SLuint8 index,  
        SLHSL *color
    );
};
```

Interface ID

2cc1cd80-ddd6-11db-807e-0002a5d5c51b

Defaults

Initially, all LEDs are in the off state. Default color is undefined.
ActivateLEDArray

```c
SLresult (*ActivateLEDArray) (  
    SLLEDArrayItf self,  
    SLuint32 lightMask  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Activates or deactivates individual LEDs in an array of LEDs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in]</td>
</tr>
<tr>
<td>lightMask</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>Valid bits in lightMask range from the least significant bit, which indicates the first LED in the array, to bit SLLEDDescriptor::ledCount - 1, which indicates the last LED in the array. Bits set outside this range are ignored.</td>
</tr>
<tr>
<td>See also</td>
<td>SLLEDDescriptor [see section 9.1.20].</td>
</tr>
</tbody>
</table>
IsLEDArrayActivated

```
SLresult (*IsLEDArrayActivated) (  
  SLLEDArrayItf self,  
  SLuint32 *lightMask  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the state of each LED in an array of LEDs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in] Pointer to a SLLEDArrayItf interface.</td>
</tr>
<tr>
<td>lightMask</td>
<td>[out] Address to store a bit mask indicating which LEDs are activated or deactivated.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Valid bits in lightMask range from the least significant bit, which indicates the first LED in the array, to bit SLLEDDescriptor::ledCount - 1, which indicates the last LED in the array. Bits set outside this range are ignored.</td>
</tr>
<tr>
<td>See also</td>
<td>SLLEDDescriptor [see section 9.1.20].</td>
</tr>
</tbody>
</table>
SetColor

```c
SLresult (*SetColor) (  
  SLLEDArrayItf self,  
  SLuint8 index,  
  const SLHSL *color )
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the color of an individual LED.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The LED must support setting color, per SLLEDDescriptor::colorMask.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in] Pointer to a SLLEDArrayItf interface.</td>
</tr>
<tr>
<td>index</td>
<td>[in] Index of the LED. Range is [0, SLLEDDescriptor::ledCount)</td>
</tr>
<tr>
<td>color</td>
<td>[in] Address of a data structure containing an HSL color.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>SLLEDDescriptor [see section 9.1.20].</td>
</tr>
</tbody>
</table>
GetColor

```c
SLresult (*GetColor) (  
    SLLEDArrayItf self,  
    SLuint8 index,  
    SLHSL *color  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the color of an individual LED.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The LED must support setting color, per SLLEDDescriptor::colorMask.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in] Pointer to a SLLEDArrayItf interface.</td>
</tr>
<tr>
<td>index</td>
<td>[in] Index of the LED. Range is [0, SLLEDDescriptor::ledCount)</td>
</tr>
<tr>
<td>color</td>
<td>[out] Address to store a data structure containing an HSL color.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>SLLEDDescriptor [see section 9.1.20].</td>
</tr>
</tbody>
</table>
8.22 SLMetadataExtractionItf

Description

The SLMetadataExtractionItf interface allows an application developer to acquire metadata. It is used for scanning through a file’s metadata, providing the ability to determine how many metadata items are available, to filter for or against metadata items by key, and to have the engine fill in a data structure containing full metadata information for a metadata item.

The SLMetadataExtractionItf interface defaults to a simple search: in the case of simple formats (e.g. MP3, ADTS, WAVE, AU, AIFF), there is only one location for metadata, and this simple method searches it completely; in the case of advanced formats (e.g. MP4/3GP, XMF, SMIL), there are potentially many locations for metadata, and the engine searches only the topmost layer of metadata. Used in combination with the SLMetadataTraversalItf interface, the SLMetadataExtractionItf interface is able to search all metadata in any file using a variety of search modes.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section 7.8] and Metadata Extractor [see section 7.7] objects.

See section B.4 for an example on using this interface.

Dynamic Interface Addition

If this interface is added dynamically (using DynamicInterfaceManagementItf) the set of exposed metadata items might be limited compared to the set of exposed items had this interface been requested during object creation time. Typically, this might be the case in some implementations for efficiency reasons, or when the interface is added dynamically during playback of non-seekable streamed content and the metadata is located earlier in the stream than what was the interface addition time.

Khronos Keys

The keys that can be used to access metadata are the keys defined in the metadata specification of the media format in question. In addition, the OpenSL ES specification defines a few format-agnostic keys, called “Khronos keys”. The Khronos keys are for those developers who may not be familiar with the original metadata keys of the various media formats, but still want to extract metadata using OpenSL ES. It is the responsibility of API implementations to map these Khronos keys to the format-specific standard metadata keys. The Khronos keys are not meant to replace the standard metadata keys or to restrict the number of metadata keys available to the application. Developers conversant with the standard metadata keys in each format can still specify exactly the keys they are interested in with the help of the MetadataExtractionItf. The support for these Khronos keys is format-dependent.
The following table lists the Khronos keys. This list does not purport to be a comprehensive union of the standard keys in the various media formats. On the contrary, it is deliberately limited to the set of commonly-used metadata items. It should be considered as a baseline list.

Table 10: Khronos Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"KhronosTitle"</td>
<td>The title of the low-level entity, such as the name of the song, book chapter, image, video clip.</td>
</tr>
<tr>
<td>"KhronosAlbum"</td>
<td>The title of the high-level entity, such as the name of the song/video/image album, the name of the book.</td>
</tr>
<tr>
<td>"KhronosTrackNumber"</td>
<td>The number of the track.</td>
</tr>
<tr>
<td>"KhronosArtist"</td>
<td>The name of the artist, performer.</td>
</tr>
<tr>
<td>"KhronosGenre"</td>
<td>The genre of the media.</td>
</tr>
<tr>
<td>"KhronosYear"</td>
<td>The release year.</td>
</tr>
<tr>
<td>"KhronosComment"</td>
<td>Other comments on the media. For example, for images, this could be the event at which the photo was taken.</td>
</tr>
<tr>
<td>"KhronosArtistURL"</td>
<td>A URL pointing to the artist's site.</td>
</tr>
<tr>
<td>"KhronosContentURL"</td>
<td>A URL pointing to the site from which (alternate versions of) the content can be downloaded.</td>
</tr>
<tr>
<td>"KhronosRating"</td>
<td>A subjective rating of the media.</td>
</tr>
<tr>
<td>"KhronosAlbumArtJPEG"</td>
<td>Associated JPEG image, such as album art. The value associated with this key (the image itself) is in binary, in one of several image formats.</td>
</tr>
<tr>
<td>"KhronosAlbumArtPNG"</td>
<td>Associated PNG image, such as album art. The value associated with this key (the image itself) is in binary, in one of several image formats.</td>
</tr>
<tr>
<td>"KhronosCopyright"</td>
<td>Copyright text.</td>
</tr>
<tr>
<td>"KhronosSeekPoint"</td>
<td>Seek points of the media.</td>
</tr>
</tbody>
</table>

In this regard, three important scenarios are worth considering:

Scenario 1: Some of the Khronos keys do not have an equivalent standard metadata key in the media format under consideration: Only those Khronos keys for which there exists a mapping to the standard keys of the media are populated; the remaining Khronos keys remain empty, that is, no mapping exists and they are not exposed.

Scenario 2: The application is interested in metadata keys that are not part of the list of Khronos keys: The application has the option of ignoring the Khronos keys entirely and directly specifying exactly those standard metadata keys that it is interested in, using MetadataExtractionItf.
Scenario 3: The application’s metadata key list of interest is a proper superset of the Khronos key list: The application has the option of ignoring the Khronos key list entirely (as in Scenario #2) or it can use the Khronos key list and supplement it by accessing the extra format-specific standard keys directly using the MetadataExtractionItf.

All the Khronos keys are encoded in ASCII. The encoding and the language country code of the associated values depend on the media content. However, the encoding of the values is in one of the encoded strings with an exception that the values associated with “KhronosAlbumArtJPEG” and “KhronosAlbumArtPNG” keys have the encoding SL_CHARACTERENCODING_BINARY.

Seek Points

SLMetadataExtractionItf can be used for querying the seek points of the media. This is done by using the standard metadata (ASCII) key “KhronosSeekPoint”.

The associated value of Khronos seek points are represented with SLMetadataInfo structures, which is the case with all the metadata keys. The character encoding of this SLMetadataInfo structure is SL_CHARACTERENCODING_BINARY, since the value has special format described below.

<table>
<thead>
<tr>
<th>time offset</th>
<th>character encoding of the name</th>
<th>name</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 35: The data field of SLMetadataInfo Structure containing the value corresponding to a KhronosSeekPoint key.

The data field of the SLMetadataInfo struct contains in its first 4 bytes the time offset (little endian) of the seek point as SLmilliseconds. (The length of the value is 4 bytes, since SLmillisecond is SLuint32.) SeekItf::SetPosition() can be used for seeking that seek point.

The bytes from the 5th to the 8th contain the character encoding of the name of the seek point as a SL_CHARACTERENCODING macro.

Starting from the 9th byte, the data field contains the name of the seek point (for example, the chapter name) in the character encoding defined in bytes 5 to 8 and the language defined in the SLMetadataInfo struct. The name is always null-terminated, which means that even if the name would be empty, the length of the value is always at least 9 bytes.

There can be multiple “KhronosSeekPoint” items for the same seek point to allow multiple language support. That is, the number of “KhronosSeekPoint” items is the number of seek points times the number of languages supported. The AddKeyFilter() method can be used for looking at seek points only in specific language by setting the pKey parameter as
“KhronosSeekPoint” and the `valueLangCountry` parameter to contain the language / country code of interest.

Mandated Keys

An implementation of `SLMetadataExtractionItf` must support all methods on the interface. This specification does not mandate that an implementation support any particular key (Khronos key or otherwise) even in cases where the interface itself is mandated on an object.

Filtering of Metadata Items

The interface enables filtering of metadata items according to several criteria (see `AddKeyFilter()`). Theoretically, the application may never use the filtering functionality and do filtering itself. However, in practice, an implementation may use the filtering information in order to make extraction more efficient in terms of memory consumption or computational complexity. For that matter, it is recommended that applications that are not interested in the entire set of metadata items will use the filtering mechanism.

Prototype

```c
extern const SLInterfaceID SL_IID_METADATAEXTRACTION;

struct SLMetadataExtractionItf;
typedef const struct SLMetadataExtractionItf_
    * const * SLMetadataExtractionItf;

struct SLMetadataExtractionItf_ {
    SLresult (*GetItemCount) (  
        SLMetadataExtractionItf self,  
        SLuint32 *pItemCount
    );
    SLresult (*GetKeySize) (  
        SLMetadataExtractionItf self,  
        SLuint32 index,  
        SLuint32 *pKeySize
    );
    SLresult (*GetKey) (  
        SLMetadataExtractionItf self,  
        SLuint32 index,  
        SLuint32 keySize,  
        SLMetadataInfo *pKey
    );
    SLresult (*GetValueSize) (  
        SLMetadataExtractionItf self,  
        SLuint32 index,  
        SLuint32 *pValueSize
    );
};
```
SLresult (*GetValue) (
 SLMetadataExtractionItf self,
 SLuint32 index,
 SLuint32 valueSize,
 SLMetadataInfo *pValue
);
SLresult (*AddKeyFilter) (
 SLMetadataExtractionItf self,
 SLuint32 keySize,
 const void *pKey,
 SLuint32 keyEncoding,
 const SLchar *pValueLangCountry,
 SLuint32 valueEncoding,
 SLuint8 filterMask
);
SLresult (*ClearKeyFilter) (
 SLMetadataExtractionItf self
);

Interface ID

aa5b1f80-ddd6-11db-ac8e-0002a5d5c51b

Defaults

The metadata key filter is empty upon realization of the interface. The default metadata scope is the root of the file.
Methods

GetItemCount

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the number of metadata items within the current scope of the object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pItemCount [out] Number of metadata items. Must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>itemCount is determined by the current metadata filter. For example, in a situation where four metadata items exist, and there is no filter, GetItemCount() will return 4; if there is a filter that matched only one of the keys, GetItemCount() will return 1.</td>
</tr>
<tr>
<td></td>
<td>GetItemCount() returns the number of metadata items for a given metadata scope (active node). The scope is determined by methods within SLMetadataTraversalItf.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
GetKeySize

```c
SLresult (*GetKeySize) ( 
    SLMetadataExtractionItf self, 
    SLuint32 index, 
    SLuint32 *pKeySize 
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the byte size of a given metadata key.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>[in] Metadata item Index. Range is [0, GetItemCount()).</td>
</tr>
<tr>
<td>pKeySize</td>
<td>[out] Address to store key size. size must be greater than 0. Must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>GetKeySize() is used for determining how large a block of memory is necessary to hold the key returned by GetKey().</td>
</tr>
<tr>
<td>See also</td>
<td>GetKey()</td>
</tr>
</tbody>
</table>
GetKey

```c
SLresult (*GetKey) (  
    SLMetadataExtractionItf self,  
    SLuint32 index,  
    SLuint32 keySize,  
    SLMetadataInfo *pKey  
);
```

Description
Returns a SLMetadataInfo structure and associated data referenced by the structure for a key.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>[in]</td>
<td>Metadata item Index. Range is [0, GetItemCount()).</td>
</tr>
<tr>
<td>size</td>
<td>[in]</td>
<td>Size of the memory block passed as key. Range is [1, GetKeySize()).</td>
</tr>
<tr>
<td>pKey</td>
<td>[out]</td>
<td>Address to store the key. Must be non-NULL.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_BUFFER_INSUFFICIENT

Comments
GetKey() fills out the SLMetadataInfo structure, including data for the key beyond the size of the structure.
If the given size is smaller than the needed size
SL_RESULT_BUFFER_INSUFFICIENT is returned and only data of the given size will be written; however, no invalid strings are written. That is, the null-terminator always exists and multibyte characters are not cut in the middle.

See also
GetKeySize()
GetValueSize

```c
SLresult (*GetValueSize) (SLMetadataExtractionItf self,
   SLuint32 index,
   SLuint32 *pValueSize
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the byte size of a given metadata value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>[in]</td>
</tr>
<tr>
<td>pValueSize</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>GetValueSize() is used for determining how large a block of memory is necessary to hold the value returned by GetValue().</td>
</tr>
<tr>
<td>See also</td>
<td>GetValue()</td>
</tr>
</tbody>
</table>
GetValue

```c
SLresult (*GetValue) (  
    SLMetadataExtractionItf self,
    SLuint32 index,
    SLuint32 size,
    SLMetadataInfo *pValue
);
```

Description
Returns a SLMetadataInfo structure and associated data referenced by the structure for a value.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>[in]</td>
<td>Metadata item Index. Range is [0, GetItemCount()).</td>
</tr>
<tr>
<td>size</td>
<td>[in]</td>
<td>Size of the memory block passed as value. Range is [0, GetValueSize()].</td>
</tr>
<tr>
<td>pValue</td>
<td>[out]</td>
<td>Address to store the value. Must be non-NULL.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_BUFFER_INSUFFICIENT

Comments
GetValue() fills out the SLMetadataInfo structure, including data for the value beyond the size of the structure.

If the given size is smaller than the needed size
SL_RESULT_BUFFER_INSUFFICIENT is returned and only data of the given size will be written; however, no invalid strings are written. That is, the null-terminator always exists and multibyte characters are not cut in the middle.

See also
GetValueSize()
AddKeyFilter

```c
SLresult (*AddKeyFilter)(
    SLMetadataExtractionItf self,
    SLuint32 keySize,
    const void *pKey,
    SLuint32 keyEncoding,
    const SLchar *pValueLangCountry,
    SLuint32 valueEncoding,
    SLuint8 filterMask
);
```

Description
Adds a filter for a specific key.

Pre-conditions
At least one criteria parameter (`pKey`, `keyEncoding`, `pValueLangCountry`, `valueEncoding`) must be provided.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keySize</td>
<td>[in] Size, in bytes, of the <code>pKey</code> parameter. Ignored if filtering by key is disabled.</td>
<td></td>
</tr>
<tr>
<td>pKey</td>
<td>[in] The key to filter by. The entire key must match. Ignored if filtering by key is disabled.</td>
<td></td>
</tr>
<tr>
<td>keyEncoding</td>
<td>[in] Character encoding of the <code>pKey</code> parameter. Ignored if filtering by key is disabled.</td>
<td></td>
</tr>
<tr>
<td>valueEncoding</td>
<td>[in] Encoding of the value to filter by. Ignored if filtering by encoding is disabled.</td>
<td></td>
</tr>
<tr>
<td>filterMask</td>
<td>[in] Bitmask indicating which criteria to filter by. Should be one of the <code>SL_METADATA_FILTER</code> macros, see section 9.2.19.</td>
<td></td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

Comments

AddKeyFilter() adds a key to the metadata key filter. The filter defines which metadata items are available when asking how many exist (getItemCount()) and how they are indexed for calls to getKeySize(), getKey(), getValueSize(), and getValue(). For example, if a file contains two metadata items, with keys "foo" and "bar" (both ASCII), calling AddKeyFilter() for "foo" will cause getItem to return only the metadata item "foo." A subsequent call to AddKeyFilter for "bar" will cause getItem() to return both metadata items.
AddKeyFilter

The key filter uses one or more of the following criteria: key data, value encoding, and language country specification.

Key data filter will consider a metadata item to match when the data in the filter key charset encoding and filter key value fields are identical to the key charset encoding and key value, respectively, found in a metadata item in the media. If the filter key charset encoding is different from the charset encoding that the media metadata item uses, it is optional for the implementation to convert the values of the filter key and the media metadata item key to the same charset, and evaluate whether they match.

Language / country filter will consider a metadata item to match the criteria if the item’s value language / country matches the filter’s language / country code. Refer to above for a description of what matching means. The value encoding filter will simply match all items with the same value encoding.

While it is possible to use all three criteria when calling AddKeyFilter(), it is also possible to include fewer criteria. filterMask is used for defining which criteria should be considered when calling AddKeyFilter(). It is constructed by bit-wise ORing of the metadata filter macros, see section 9.2.19.

Note that AddKeyFilter() treats parameters as if they were ANDed together. For example, calling AddKeyFilter() with key data and language / country code (but not encoding) means that the filter will cause metadata that matches both the key and the language / country code to be returned, but not metadata that matches only one. Further note that subsequent calls to AddKeyFilter() are treated as if they were ORed together. For example, if the first call passed a key (but nothing else) and a second call passed a key and an encoding (but no language / country code), the interface will return metadata matching the first key and metadata matching both the second key and the encoding.

For example, to filter for all metadata that uses the ASCII encoding for the value, pass valueEncoding as SL_CHARACTERENCODING_ASCII and filterMask as SL_METADATA_FILTER_ENCODING. To filter for all metadata that uses the ASCII encoding for the value and uses the language country code “en-us”, pass valueEncoding as SL_CHARACTERENCODING_ASCII, valueLangCountry as “en-us,” and filterMask as SL_METADATA_FILTER_ENCODING | SL_METADATA_FILTER_LANG.

Note that when the filter is clear (that is, when no filter criteria have been added or after they have been cleared), the filter is defined so that GetItemCount() returns all metadata items (as if each criteria was set to a wildcard).

See also ClearKeyFilter()
ClearKeyFilter

<table>
<thead>
<tr>
<th>Description</th>
<th>Clears the key filter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td>Comments</td>
<td>Note that when the filter is clear (that is, when no filter criteria have been added or after they have been cleared), the filter is defined so that GetItemCount() returns all metadata items (as if each criteria was set to a wildcard).</td>
</tr>
<tr>
<td>See also</td>
<td>AddKeyFilter()</td>
</tr>
</tbody>
</table>
8.23 SLMetadataTraversalItf

Description

The SLMetadataTraversalItf interface is used in order to support advanced metadata extraction. It allows developers to traverse a file using a variety of modes, which determine how to traverse the metadata and define how the methods within the interface behave.

The interface provides the ability to set the traversal mode, to determine how many child nodes exist within a given scope and what their type is, and to set the scope.

The SLMetadataTraversalItf relies upon, and must be exposed at the same time as or after the SLMetadataExtractionItf.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section 7.8] and Metadata Extractor [see section 7.7] objects.

Dynamic Interface Addition

If this interface is added dynamically (using SLDynamicInterfaceManagementItf [see section 8.14]) the set of exposed metadata nodes might be limited compared to the set of exposed nodes had this interface been requested during object creation time. Typically, this might be the case in some implementations for efficiency reasons, or when the interface is added dynamically during playback of non-seekable streamed content and the metadata is located earlier in the stream than what was the interface addition time.

Prototype

extern const SLInterfaceID SL_IID_METADATA_TRAVERSAL;

struct SLMetadataTraversalItf_;
typedef const struct SLMetadataTraversalItf_ * const * SLMetadataTraversalItf;

struct SLMetadataTraversalItf_ {
 SLresult (*SetMode) (SLMetadataTraversalItf self, SLuint32 mode);
 SLresult (*GetChildCount) (SLMetadataTraversalItf self, SLuint32 *pCount);
};
Interface ID

c43662c0-ddd6-11db-a7ab-0002a5d5c51b

Defaults

The metadata traversal mode defaults to SL_METADATA_TRAVERSALMODE_NODE [see section 9.2.20]. The default metadata scope is the root of the file. That is, the active node is root by default.
Methods

SetMode

```c
SLresult (*SetMode) (  
    SLMetadataTraversalItf self,  
    SLuint32 mode  
);
```

Description
Sets the metadata traversal mode.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>[in]</td>
<td>Mode of metadata traversal. Must be one of the SL_METADATA_TRAVERSALMODE macros.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- **SL_RESULT_SUCCESS**
- **SL_RESULT_PARAMETER_INVALID**

Comments
Metadata traversal mode determines how a file is parsed for metadata. It is possible to traverse the file either by iterating through the file in tree fashion - by node (**SL_METADATA_TRAVERSALMODE_NODE**, the default mode), or by scanning through the file as if it were a flat list of metadata items (**SL_METADATA_TRAVERSALMODE_ALL**). The optimal mode is largely determined by the file format.

See also
SL_METADATA_TRAVERSALMODE [see section 9.2.20]
GetChildCount

```c
SLresult (*GetChildCount) ( 
    SLMetadataTraversalItf self, 
    SLuint32 *pCount
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the number of children (nodes, streams, etc.) within the current scope.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pCount [out] Number of children.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Child count is determined by the metadata traversal mode see section 9.2.20]:</td>
</tr>
<tr>
<td></td>
<td>• If the mode is set to SL_METADATATRAVERSALMODE_ALL, GetChildCount() will always return 0.</td>
</tr>
<tr>
<td></td>
<td>• If the mode is set to SL_METADATATRAVERSALMODE_NODE, GetChildCount() will return the number of nodes within the current scope. For example, in a Mobile XMF file with one SMF node and one Mobile DLS node, GetChildCount() will return 2 from the root.</td>
</tr>
</tbody>
</table>

| See also | SetMode() |

GetChildMIMETypeSize

```c
SLresult (*GetChildMIMETypeSize) ( 
    SLMetadataTraversalItf self, 
    SLuint32 index, 
    SLu3int2 *pSize 
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the size in bytes needed to store the MIME type of a child.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>[in] Child index. Range is [0, GetChildCount()).</td>
</tr>
<tr>
<td>pSize</td>
<td>[out] Size of the MIME type in bytes.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>GetChildCount()</td>
</tr>
</tbody>
</table>
GetChildInfo

```c
SLresult (*GetChildInfo)(
    SLMetadataTraversalItf self,
    SLuint32 index,
    SLint32 *pNodeID,
    SLuint32 *pType,
    SLuint32 size,
    SLchar *mimeType
);
```

Description
Returns information about a child.

Pre-conditions
None

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>[in]</td>
<td>Child index. Range is [0, GetChildCount()].</td>
</tr>
<tr>
<td>pNodeID</td>
<td>[out]</td>
<td>Unique identification number of the child.</td>
</tr>
<tr>
<td>pType</td>
<td>[out]</td>
<td>Node type. See SL_NODETYPE macros [see section 9.2.26].</td>
</tr>
<tr>
<td>size</td>
<td>[in]</td>
<td>Size of the memory block passed as mimeType. Range is (0, max GetChildMIMETypeSize()).</td>
</tr>
<tr>
<td>mimeType</td>
<td>[out]</td>
<td>Address to store the MIME type.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
To ignore MIME type, set size to 0 and mimeType to NULL.

See also
GetChildCount()
SetActiveNode

| SLresult (*SetActiveNode) (
| SLMetadataTraversalItf self,
| SLuint32 index
|);

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the scope to a child index.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>[in] Child index. Range is special (see below).</td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:
| | SL_RESULT_SUCCESS
| | SL_RESULT_PARAMETER_INVALID |
| Comments | SetActiveNode() causes the current scope to descend or ascend to the given index. To descend, set index to [0, GetChildCount()]. To ascend to the parent scope, set index to SL_NODE_PARENT. Calling SetActiveNode() with index set to SL_NODE_PARENT will return SL_RESULT_PARAMETER_INVALID if the active node is root. |
| See also | GetChildCount(), SL_NODE_PARENT [see section 9.2.25] |
8.24 SLMIDIMessageItf

Description

The MIDI message interface is used in order to send MIDI messages directly to a MIDI-based player, and to set MIDI message and meta-event callbacks. It is used primarily to determine the state of the internal MIDI synthesizer at runtime by setting callbacks that report that state, as well as to set the state via the `SendMessage` method.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype

```c
extern const SLInterfaceID SL_IID_MIDIMESSAGE;

struct SLMIDIMessageItf_;
typedef const struct SLMIDIMessageItf * const * SLMIDIMessageItf;

struct SLMIDIMessageItf_ {
    SLresult (*SendMessage) (SLMIDIMessageItf self, const SLuint8 *data, SLuint32 length);
    SLresult (*RegisterMetaEventCallback) (SLMIDIMessageItf self, slMetaEventCallback callback, void *pContext);
    SLresult (*RegisterMIDIMessageCallback) (SLMIDIMessageItf self, slMIDIMessageCallback callback, void *pContext);
    SLresult (*AddMIDIMessageCallbackFilter) (SLMIDIMessageItf self, SLuint32 messageType);
    SLresult (*ClearMIDIMessageCallbackFilter) (SLMIDIMessageItf self);
};
```

Interface ID

ddf4a820-ddd6-11db-b174-0002a5d5c51b
Callbacks

slMetaEventCallback

<table>
<thead>
<tr>
<th>Description</th>
<th>Type of the meta-event, as specified in MIDI specification. Range is [0, 127].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Address of an array of bytes containing the meta-event data (may be NULL if length is 0).</td>
</tr>
<tr>
<td></td>
<td>SMF tick at which the meta-event was encountered.</td>
</tr>
<tr>
<td></td>
<td>SMF track on which the meta-event was encountered.</td>
</tr>
<tr>
<td>Comments</td>
<td>slMetaEventCallback returns the address of the entire meta-event (not including the 0xFF identifier, the type byte, or the size VLQ), the MIDI tick at which the meta-event was found, and the Standard MIDI File track number.</td>
</tr>
<tr>
<td></td>
<td>For example, the data of a Set Tempo meta-event for 500,000 microseconds per quarter note (120 BPM) would be represented by the following byte sequence: 0x07 0xA1 0x20, since 0x7A120 = 500000.</td>
</tr>
<tr>
<td>See also</td>
<td>RegisterMetaEventCallback()</td>
</tr>
</tbody>
</table>

```c
typedef void (SLAPIENTRY *slMetaEventCallback) (  
    SLMIDIMessageItf caller,  
    void *pContext,  
    SLuint8 type,  
    SLuint32 length,  
    const SLuint8 *pData,  
    SLuint32 tick,  
    SLuint16 track  
);  
```
slMIDIMessageCallback

```c
typedef void (SLAPIENTRY *slMIDIMessageCallback) (
    SLMIDIMessageItf caller,
    void *pContext,
    SLuint8 statusByte,
    SLuint32 length,
    const SLuint8 *pData,
    SLuint32 tick,
    SLuint16 track
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Executes when a MIDI-based player encounters a MIDI message.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>caller</td>
<td>[in] Interface instantiation on which the callback was registered.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td>statusByte</td>
<td>[in] Status byte of the MIDI message. Range is [0x80, 0xFF].</td>
</tr>
<tr>
<td>length</td>
<td>[in] Length of the MIDI message, not including the status byte. length must be greater than 0.</td>
</tr>
<tr>
<td>pData</td>
<td>[in] Address of an array of bytes containing the MIDI message data bytes.</td>
</tr>
<tr>
<td>tick</td>
<td>[in] SMF tick at which the MIDI message was encountered.</td>
</tr>
<tr>
<td>track</td>
<td>[in] SMF track on which the MIDI message was encountered.</td>
</tr>
</tbody>
</table>

Comments

slMIDIMessageCallback returns the status byte of the MIDI message, the address of the data byte(s) of the MIDI message (not including the status byte), the MIDI tick at which the MIDI message was found, and, if applicable, the Standard MIDI file track number. For example, a Note On message on channel 3 for note 64 with velocity 96 (0x93 0x40 0x60) would be represented by the following data byte sequence: 0x40 0x60. It would also return the status byte as 0x93.

Note: if the origin of the MIDI message is a MIDI buffer queue, track will be set to 0. Otherwise, track will be set to the SMF track on which the MIDI message was encountered (zero-based, that is, when the track parameter is 0, the message was contained in the first track in the SMF).

Note: slMIDIMessageCallback passes the status byte separately to ensure that MIDI messages that use running status are properly identified.

See also

RegisterMIDIMessageCallback()
Methods

SendMessage

| SLresult (*SendMessage) (
|
| SLMIDIMessageItf self,
| const SLuint8 *data,
| SLuint32 length
|) |
|---|---|---|
| **Description** | Sends a MIDI message to a MIDI-based player. |
| **Pre-conditions** | None |
| **Parameters** |
data	[in]	Address of an array of bytes containing the MIDI message.
length	[in]	Length of the MIDI message data. length must be greater than 0.
Return value	The return value can be one of the following:	
SL_RESULT_SUCCESS		
SL_RESULT_PARAMETER_INVALID		
SL_RESULT_MEMORY_FAILURE		
SL_RESULT_CONTENT_CORRUPTED		
Comments	See the MIDI 1.0 Detailed Specification [MIDI] for details on the format of MIDI messages, and the Standard MIDI Files 1.0 specification for details on the format of SMF data including timing information and meta events.	
SendMessage() must begin with a valid MIDI status byte.		
Note: SendMessage() does not support sending SMF meta-events.		
The set of supported MIDI messages includes those specified in the SP-MIDI Device 5-24 Note Profile for 3GPP and the Mobile DLS Specification. MIDI player support for any additional MIDI messages is optional, and specific to the implementation.		
The play state does not affect controlling the MIDI Player with this method.		
See also	None.	
RegisterMetaEventCallback

```c
SLresult (*RegisterMetaEventCallback) (  
  SLMIDIMessageItf self,  
  slMetaEventCallback callback,  
  void *pContext  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or clears a MIDI-based player’s SMF meta-event callback.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>callback</code></td>
<td>[in] Address of the meta-event callback.</td>
</tr>
<tr>
<td><code>pContext</code></td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>See the Standard MIDI Files 1.0 specification [MIDI] for details on the format of SMF meta-events.</td>
</tr>
<tr>
<td>See also</td>
<td>slMetaEventCallback</td>
</tr>
</tbody>
</table>
RegisterMIDIMessageCallback

```c
SLresult (*RegisterMIDIMessageCallback) (  
    SLMIDIMessageItf self,  
    slMIDIMessageCallback callback,  
    void *pContext  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or clears a MIDI-based player’s MIDI message callback.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>callback</code></td>
<td>[in] Address of the MIDI message callback.</td>
</tr>
<tr>
<td><code>pContext</code></td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>It is necessary to add specific MIDI message types to the MIDI message filter in order for the <code>slMIDIMessageCallback</code> to execute.</td>
</tr>
<tr>
<td></td>
<td>See the MIDI 1.0 Detailed Specification [MIDI] for details on the format of MIDI messages.</td>
</tr>
<tr>
<td>See also</td>
<td><code>slMIDIMessageCallback()</code>, <code>AddMIDIMessageCallbackFilter()</code>, <code>ClearMIDIMessageCallbackFilter()</code></td>
</tr>
</tbody>
</table>
AddMIDIMessageCallbackFilter

Function

```c
SLresult (*AddMIDIMessageCallbackFilter) (SLMIDIMessageItf self, SLuInt32 messageType);
```

Description

Adds a MIDI message type to the player’s MIDI message callback filter.

Pre-conditions

None

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>messageType</td>
<td>[in] MIDI message type to filter. Must be one of the SL_MIDIMESSAGETYPE macros.</td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments

The MIDI message callback filter is an additive opt-in filter that adds MIDI message types to a list of messages that are used for determining whether or not to execute the `slMIDIMessageCallback`. If no message types are added, `slMIDIMessageCallback` will not execute.

`AddMIDIMessageCallbackFilter()` may be called at any time.

See also

- `slMIDIMessageCallback`
- `ClearMIDIMessageCallbackFilter()`®
- `RegisterMIDIMessageCallback()`®
- `SL_MIDIMESSAGETYPE()`

ClearMIDIMessageCallbackFilter

Function

```c
SLresult (*ClearMIDIMessageCallbackFilter) (SLMIDIMessageItf self);
```

Description

Clears the player’s MIDI message callback filter.

Pre-conditions

None

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>

Return value

The return value can be one of the following:

- SL_RESULT_SUCCESS

Comments

`ClearMIDIMessageCallbackFilter()` may be called at any time.

See also

- `slMIDIMessageCallback`
- `AddMIDIMessageCallbackFilter()`®
- `RegisterMIDIMessageCallback()`®
8.25 SLMIDIMuteSoloItf

Description

The interface to mute and solo MIDI channels and tracks. It also returns the MIDI track count.

Muting a MIDI channel or track silences it until it is unmuted. Soloing a channel or track silences all other non-soloed channels or tracks. While silenced, channels and tracks continue to process MIDI messages, but simply cease to contribute any Note On messages to the player's output.

It is possible to solo more than one channel or track at a time. In such circumstances, only those channels or tracks that are soloed contribute to the player's output. It is also possible to mix muting and soloing on a channel or track. In this case, a channel or track will be heard if and only if it is not muted and it is soloed or no other channel or track is soloed.

Finally, it is possible to mix channel and track soloing and muting. Because tracks can play to multiple channels, muting a track will silence whatever contribution it would make to that channel.

Example:

Assume the following SP-MIDI file:

- Track 1 plays data to channels 0, 1, and 2
- Track 2 plays data to channels 2 and 3
- Track 3 plays data to channels 3

Muting channel 2 will silence the channel, implicitly silencing the contribution track 1 and track 2 make to that channel (track 3's output is unaffected).

Soloing channel 3 will silence all other channels, affecting the contribution of all tracks except for track 3, which is unaffected because its entire contribution to the output is to the soloed channel. Adding a solo to channel 2 will silence all channels other than 2 and 3, meaning that only track 1 is affected (its contribution to channels 0 and 1 are silenced, channel 2 continues to play).

Muting track 2 silences its contribution to channels 2 and 3, but allows tracks 1 and 3 to continue unaffected.

Soloing track 2 silences the contribution all other tracks make. Adding a solo to track 3 allows track 2 and track 3 to play unaltered and to silence track 1.
Soloing Track 2 and soloing channel 0 effectively silences all playback; the effect is to allow only track 2 to contribute to the player’s output, and only on channel 0, which it does not use. In this case, adding a solo to track 1 would allow track 1 to play on channel 0 alone. Alternately, adding a solo to channel 2 would allow track 2 to play channel 2.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype

```c
extern const SLInterfaceID SL_IID_MIDIMUTESOLO;

struct SLMIDIMuteSoloItf_;
typedef const struct SLMIDIMuteSoloItf_ * const * SLMIDIMuteSoloItf;

struct SLMIDIMuteSoloItf_ {
  SLresult (*SetChannelMute) (SLMIDIMuteSoloItf self, SLuint8 channel, SLboolean mute);
  SLresult (*GetChannelMute) (SLMIDIMuteSoloItf self, SLuint8 channel, SLboolean *pMute);
  SLresult (*SetChannelSolo) (SLMIDIMuteSoloItf self, SLuint8 channel, SLboolean solo);
  SLresult (*GetChannelSolo) (SLMIDIMuteSoloItf self, SLuint8 channel, SLboolean *pSolo);
  SLresult (*GetTrackCount) (SLMIDIMuteSoloItf self, SLuint16 *pCount);
  SLresult (*SetTrackMute) (SLMIDIMuteSoloItf self, SLuint16 track, SLboolean mute);
  SLresult (*GetTrackMute) (SLMIDIMuteSoloItf self, SLuint16 track, SLboolean *pMute);
};
```
SLresult (*SetTrackSolo) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean solo
);
SLresult (*GetTrackSolo) (
 SLMIDIMuteSoloItf self,
 SLuint16 track,
 SLboolean *pSolo
);

Interface ID
039eaf80-ddd7-11db-9a02-0002a5d5c51b

Methods

SetChannelMute

<table>
<thead>
<tr>
<th>Description</th>
<th>Mutes or unmutes a MIDI channel on a MIDI-based player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a SLMIDIMuteSoloItf interface.</td>
</tr>
<tr>
<td></td>
<td>channel [in] MIDI channel. Range is [0, 15].</td>
</tr>
<tr>
<td></td>
<td>mute [in] Boolean indicating whether to mute or unmute the MIDI channel. SL_BOOLEAN_TRUE specifies that the MIDI channel should be muted; SL_BOOLEAN_FALSE specifies that the MIDI channel should be unmuted.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
GetChannelMute

| SLresult (*GetChannelMute) (
| SLMIDIMuteSoloItf self,
| SLuint8 channel,
| SLboolean *pMute
|); |

Description

Returns whether a MIDI channel on a MIDI-based player is muted or unmuted.

Pre-conditions

None

Parameters

self	[in]	Pointer to a SLMIDIMuteSoloItf interface.
channel	[in]	Address to store MIDI channel. Range is [0, 15].
pMute	[out]	Address to store a Boolean that indicates whether a MIDI channel is muted. This must be non-NULL. **SL_BOOLEAN_TRUE** indicates that the MIDI channel is muted; **SL_BOOLEAN_FALSE** indicates that the MIDI channel is unmuted.

Return value

The return value can be one of the following:

- **SL_RESULT_SUCCESS**
- **SL_RESULT_PARAMETER_INVALID**

Comments

None.

See also

None.
SetChannelSolo

```
SLresult (*SetChannelSolo) (  
    SLMIDIMuteSoloItf self,  
    SLuint8 channel,  
    SLboolean solo  
);  
```

Description
Solos or unsolos a MIDI channel on a MIDI-based player.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>in SLMIDIMuteSoloItf</td>
<td>Pointer to a SLMIDIMuteSoloItf interface.</td>
</tr>
<tr>
<td>channel</td>
<td>in SLuint8</td>
<td>MIDI channel. Range is [0, 15].</td>
</tr>
<tr>
<td>solo</td>
<td>in SLboolean</td>
<td>Boolean indicating whether to solo or unsolo the MIDI channel. SL_BOOLEAN_TRUE specifies that the MIDI channel should be soloed; SL_BOOLEAN_FALSE specifies that the MIDI channel should be unsoloed.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_MEMORY_FAILURE

Comments
None.

See also
None.
GetChannelSolo

```c
SLresult (*GetChannelSolo) (  
    SLMIDIIMuteSoloItf self,  
    SLuint8 channel,  
    SLboolean *pSolo
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns whether a MIDI channel on a MIDI-based player is soloed or unsoloed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a SLMIDIIMuteSoloItf interface.</td>
</tr>
<tr>
<td></td>
<td>channel [in] Address to store MIDI channel. Range is [0, 15].</td>
</tr>
<tr>
<td></td>
<td>pSolo [out] Address to store a Boolean indicating whether a MIDI channel is soloed. This must be non-NULL. SL_BOOLEAN_TRUE specifies that the MIDI channel is soloed; SL_BOOLEAN_FALSE specifies that the MIDI channel is unsoloed.</td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:
 | SL_RESULT_SUCCESS
 | SL_RESULT_PARAMETER_INVALID |
| Comments | None. |
| See also | None. |
GetTrackCount

```c
SLresult (*GetTrackCount) ( 
    SLMIDIMuteSoloItf self, 
    SLuint16 *pCount 
); 
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the number of MIDI tracks in a MIDI-based player’s SMF data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in] Pointer to a SLMIDIMuteSoloItf interface.</td>
</tr>
<tr>
<td>pCount</td>
<td>[out] Address to store the number of MIDI tracks. This must be non-NULL. Range is [1 to 65535].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>MIDI buffer queues are treated as SMF type 0 files, and thus always return 1.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
SetTrackMute

```c
SLresult (*SetTrackMute) (SLMIDIMuteSoloItf self, SLuint16 track, SLboolean mute);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Mutes or unmutes a MIDI track on a MIDI-based player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a SLMIDIMuteSoloItf interface.</td>
</tr>
<tr>
<td></td>
<td>track [in] MIDI track. Range is [0, SLMIDIMuteSoloItf::GetTrackCount()].</td>
</tr>
<tr>
<td></td>
<td>mute [in] Boolean indicating whether to mute or unmute the MIDI track. SL_BOOLEAN_TRUE specifies that the MIDI track should be muted; SL_BOOLEAN_FALSE specifies that the MIDI track should be unmuted.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS, SL_RESULT_PARAMETER_INVALID, SL_RESULT_MEMORY_FAILURE</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
GetTrackMute

```c
SLresult (*GetTrackMute) (
    SLMIDIMuteSoloItf self,
    SLuint16 track,
    SLboolean *pMute
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns whether a MIDI track on a MIDI-based player is muted or unmuted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>self</code></td>
<td>Pointer to a SLMIDIMuteSoloItf interface.</td>
</tr>
<tr>
<td><code>track</code></td>
<td>Address to store MIDI track. Range is [0, SLMIDIMuteSoloItf::GetTrackCount()).</td>
</tr>
<tr>
<td><code>pMute</code></td>
<td>Address to store a Boolean indicating whether a MIDI track is muted. This must be non-NULL. <code>SL_BOOLEAN_TRUE</code> specifies that the MIDI track is muted; <code>SL_BOOLEAN_FALSE</code> specifies that the MIDI track is unmuted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
</tbody>
</table>

| Comments | None. |

<p>| See also | None. |</p>
<table>
<thead>
<tr>
<th>SetTrackSolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLresult (*SetTrackSolo) (</td>
</tr>
<tr>
<td>SLMIDIMuteSoloItf self,</td>
</tr>
<tr>
<td>SLuint16 track,</td>
</tr>
<tr>
<td>SLboolean solo</td>
</tr>
<tr>
<td>) ;</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Pre-conditions</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Return value</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Comments</td>
</tr>
<tr>
<td>See also</td>
</tr>
</tbody>
</table>
GetTrackSolo

```c
SLresult (*GetTrackSolo) (  
    SLMIDIWriteSoloItf self,  
    SLuint16 track,  
    SLboolean *pSolo  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns whether a MIDI track on a MIDI-based player is soloed or unsoloed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in] Pointer to a SLMIDIWriteSoloItf interface.</td>
</tr>
<tr>
<td>track</td>
<td>[in] Address to store MIDI track. [0, SLMIDIWriteSoloItf::GetTrackCount()].</td>
</tr>
<tr>
<td>pSolo</td>
<td>[out] Address to store a Boolean indicating whether a MIDI track is soloed. This must be non-NULL. \nSL_BOOLEAN_TRUE specifies that the MIDI track is soloed; SL_BOOLEAN_FALSE specifies that the MIDI track is unsoloed.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: \nSL_RESULT_SUCCESS \nSL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
8.26 SLMIDITempoItf

Description

Interface for interacting with the MIDI data’s tempo.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype

```c
extern const SLInterfaceID SL_IID_MIDITEMPO;

struct SLMIDITempoItf_;
typedef const struct SLMIDITempoItf_ * const * SLMIDITempoItf;

struct SLMIDITempoItf_ {
    SLresult (*SetTicksPerQuarterNote) (SLMIDITempoItf self, SLuint32 tpqn);
    SLresult (*GetTicksPerQuarterNote) (SLMIDITempoItf self, SLuint32 *pTpqn);
    SLresult (*SetMicrosecondsPerQuarterNote) (SLMIDITempoItf self, SLmicrosecond uspqn);
    SLresult (*GetMicrosecondsPerQuarterNote) (SLMIDITempoItf self, SLmicrosecond *uspqn);
};
```

Interface ID

1f347400-ddd7-11db-a7ce-0002a5d5c51b

Defaults

- 96 ticks per quarter note.
- 500,000 microseconds per quarter note (120 BPM).
Methods

SetTicksPerQuarterNote

```c
SLresult (*SetTicksPerQuarterNote) (  
    SLMIDITempoItf self,  
    SLuint32 tpqn  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets a MIDI-based player’s time in ticks per quarter note.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>Playback must be stopped.</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a MIDITempoItf interface.</td>
</tr>
<tr>
<td></td>
<td>tpqn [in] Ticks per quarter note. Range is [1, 32767].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
</tr>
<tr>
<td>Comments</td>
<td>This method is intended for setting the tick resolution when working with a buffer queue source on a MIDI player. When playing back MIDI files, the file itself contains this information.</td>
</tr>
<tr>
<td></td>
<td>Note: ticks per quarter note is also known as ticks per beat and pulses per quarter note.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
GetTicksPerQuarterNote

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns a MIDI-based player’s delta-time in ticks per quarter note.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a MIDITempoIf interface.</td>
</tr>
<tr>
<td></td>
<td>pTpqn [out] Address to store ticks per quarter note. This must be non-NULL. Range is [0, 32767], where 0 has a special meaning (see comments).</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Some SMF files define the tick resolution in terms other than ticks per quarter note (e.g. in terms of SMPTE frames). In such cases, the returned value will be 0. Note: ticks per quarter note is also known as ticks per beat and pulses per quarter note.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
SetMicrosecondsPerQuarterNote

```c
SLresult (*SetMicrosecondsPerQuarterNote) (
    SLMIDITempoItf self,
    SLmicrosecond uspqn
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets a MIDI-based player’s tempo in microseconds per quarter note.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self</td>
</tr>
<tr>
<td></td>
<td>uspqn</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Example: 500,000 microseconds per quarter note yields 120 beats per minute.</td>
</tr>
<tr>
<td></td>
<td>Note: The player’s SMF metadata may set the tempo independently, thus overriding any value that SetMicrosecondsPerQuarterNote() may set.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>

GetMicrosecondsPerQuarterNote

```c
SLresult (*GetMicrosecondsPerQuarterNote) (
    SLMIDITempoItf self,
    SLmicrosecond *uspqn
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns a MIDI-based player’s tempo in microseconds per quarter note.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self</td>
</tr>
<tr>
<td></td>
<td>uspqn</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Example: 500,000 microseconds per quarter note yields 120 beats per minute.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
8.27 SLMIDITimeltf

Description

Interface for interacting with the MIDI data in time (ticks). This interface is not available on MIDI-based players created using `SLLDataLocator_MIDIBufferQueue`.

This interface is supported on the MIDI Player [see section 7.8] object.

Prototype

```c
extern const SLInterfaceID SL_IID_MIDITIME;

struct SLMIDITimeItf_; 
typedef const struct SLMIDITimeItf_ * const * SLMIDITimeItf;

struct SLMIDITimeItf_ {
    SLresult (*GetDuration) ( 
        SLMIDITimeItf self, 
        SLuint32 *pDuration 
    );
    SLresult (*GetPosition) ( 
        SLMIDITimeItf self, 
        SLuint32 *pPosition 
    );
    SLresult (*GetPosition) ( 
        SLMIDITimeItf self, 
        SLuint32 *pPosition 
    );
    SLresult (*SetLoopPoints) ( 
        SLMIDITimeItf self, 
        SLuint32 startTick, 
        SLuint32 numTicks 
    );
    SLresult (*GetLoopPoints) ( 
        SLMIDITimeItf self, 
        SLuint32 *pStartTick, 
        SLuint32 *pNumTicks 
    );
};
```

Interface ID

3da51de0-ddd7-11db-af70-0002a5d5c51b
Methods

GetDuration

```c
SLresult (*GetDuration) (
    SLMIDITimeItf self,
    SLuint32 *pDuration
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the duration of a MIDI-based player in MIDI ticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a SLMIDITimeItf interface.</td>
</tr>
<tr>
<td></td>
<td>pDuration [out] Address to store the MIDI tick duration. This must be non-NULL. pDuration must be greater than 0.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS, SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>SLMIDITempoItf::GetTicksPerQuarterNote().</td>
</tr>
</tbody>
</table>

SetPosition

```c
SLresult (*SetPosition) (
    SLMIDITimeItf self,
    SLuint32 position
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets a MIDI-based player’s current position in MIDI ticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a SLMIDITimeItf interface.</td>
</tr>
<tr>
<td></td>
<td>position [in] MIDI tick position. Range is [0, SLMIDITimeItf::GetDuration()].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS, SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>SLMIDITempoItf::GetTicksPerQuarterNote().</td>
</tr>
</tbody>
</table>
GetPosition

```c
SLresult (*GetPosition) (  
  SLMIDITimeItf self,  
  SLuint32 *pPosition  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns a MIDI-based player’s current position in MIDI ticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>self</td>
<td>[in]</td>
</tr>
<tr>
<td>pPosition</td>
<td>[out]</td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:
 | SL_RESULT_SUCCESS
 | SL_RESULT_PARAMETER_INVALID |
| Comments | None. |
| See also | SLMIDITempoItf::GetTicksPerQuarterNote(). |
SetLoopPoints

```c
SLresult (*SetLoopPoints) (  
    SLMIDITimeItf self,  
    SLuint32 startTick,  
    SLuint32 numTicks  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets a MIDI-based player’s loop points in MIDI ticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The player must be in the <code>SL_PLAYSTATE_STOPPED</code> state.</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Pointer to a <code>SLMIDITimeItf</code> interface.</td>
</tr>
<tr>
<td></td>
<td>startTick [in] MIDI tick position of loop start. Range is <code>[0, SLMIDITimeItf::GetDuration()]</code>.</td>
</tr>
<tr>
<td></td>
<td>numTicks [in] Number of MIDI ticks in the loop. Range is <code>[0, SLMIDITimeItf::GetDuration() - startTick]</code>, where 0 is a special value, designating “no looping.”</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PRECONDITIONS_VIOLATED</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_FEATURE_UNSUPPORTED</code></td>
</tr>
<tr>
<td>Comments</td>
<td>Note: setting loop points in MIDI files may cause unpredictable audio output if the MIDI data is not known. This is due to a number of reasons, including the possibility of looping back after a note message on has been sent, but before the corresponding Note Off was sent, or looping back to MIDI data that plays properly only when a specific set of controllers are set.</td>
</tr>
<tr>
<td>See also</td>
<td><code>SLMIDITempoItf::GetTicksPerQuarterNote()</code></td>
</tr>
</tbody>
</table>
GetLoopPoints

```c
SLresult (*GetLoopPoints) (  
    SLMIDITimeItf self,  
    SLuint32 *pStartTick,  
    SLuint32 *pNumTicks  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns a MIDI-based player’s loop points in MIDI ticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>self</code></td>
<td>[in] Pointer to a <code>SLMIDITimeItf</code> interface.</td>
</tr>
<tr>
<td><code>pStartTick</code></td>
<td>[out] Address to store the MIDI tick position of loop start. This must be non-NULL. Range is [0, <code>SLMIDITimeItf::GetDuration()</code>).</td>
</tr>
<tr>
<td><code>pNumTicks</code></td>
<td>[out] Address to store the number of MIDI ticks in the loop. This must be non-NULL. Range is [0, <code>SLMIDITimeItf::GetDuration()</code> - <code>startTick</code>], where 0 is a special value, designating “no looping.”</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_FEATURE_UNSUPPORTED</code></td>
</tr>
<tr>
<td>Comments</td>
<td><code>GetLoopPoints</code> returns <code>startTick</code> as 0 and <code>numTicks</code> as <code>SLMIDITimeItf::GetDuration()</code> if not previously set.</td>
</tr>
<tr>
<td>See also</td>
<td><code>SLMIDITempoItf::GetTicksPerQuarterNote()</code></td>
</tr>
</tbody>
</table>
8.28 SLMuteSoloItf

Description

This interface exposes controls for selecting which of the player’s channels are heard and silenced.

The following restriction is placed on this interface:

- This interface cannot be exposed on a player whose audio format is mono.

This interface is supported on the Audio Player [see section 7.2] object.

Prototype

```c
extern const SLInterfaceID SL_IID_MUTESOLO;

struct SLMuteSoloItf;
typedef const struct SLMuteSoloItf_ * const * SLMuteSoloItf;

struct SLMuteSoloItf_ {
    SLresult (*SetChannelMute) (SLMuteSoloItf self, SLuint8 chan, SLboolean mute);
    SLresult (*GetChannelMute) (SLMuteSoloItf self, SLuint8 chan, SLboolean *pMute);
    SLresult (*SetChannelSolo) (SLMuteSoloItf self, SLuint8 chan, SLboolean solo);
    SLresult (*GetChannelSolo) (SLMuteSoloItf self, SLuint8 chan, SLboolean *pSolo);
    SLresult (*GetNumChannels) (SLMuteSoloItf self, SLuint8 *pNumChannels);
};
```

Interface ID

5a28ebe0-ddd7-11db-8220-0002a5d5c51b
Defaults

- No channels muted
- No channels soloed

Methods

SetChannelMute

```c
SLresult (*SetChannelMute) (  
    SLMuteSoloItf self,  
    SLuint8 chan,  
    SLboolean mute  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Mutes or unmutes a specified channel of a player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>chan [in] Channel to mute or unmute. The valid range is ([0, n-1]), where (n) is the number of audio channels in player's audio format.</td>
</tr>
<tr>
<td></td>
<td>mute [in] If set to true, mutes the channel. If set to false, unmutes the channel.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>When a channel is muted it should continue to play silently in synchronization with the other channels.</td>
</tr>
<tr>
<td>See also</td>
<td>SLVolumeItf::SetMute(), SetChannelSolo()</td>
</tr>
</tbody>
</table>
GetChannelMute

```c
SLresult (*GetChannelMute) (SLMuteSoloItf self,
                    SLuint8 chan,
                    SLboolean *pMute
                );
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the mute status of a specified channel of a player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chan</td>
</tr>
<tr>
<td></td>
<td>pMute</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>This method only returns the per-channel mute setting and is independent of any global mute or per-channel soloing that may be enabled.</td>
</tr>
<tr>
<td>See also</td>
<td><code>SLVolumeItf::SetMute()</code></td>
</tr>
</tbody>
</table>
SetChannelSolo

```c
SLresult (*SetChannelSolo) (SLMuteSoloItf self, SLuint8 chan, SLboolean solo);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables or disables soloing of a specified channel of a player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>Parameter</td>
</tr>
<tr>
<td>chan</td>
<td>[in]</td>
</tr>
<tr>
<td>solo</td>
<td>[in]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
</tbody>
</table>

| Comments | When any channel is soloed, all non-soloed channels should continue to play silently in synchronization with the soloed channels. If a channel is both muted and soloed (using `SetChannelMute()`), the channel will be silent until the channel is unmuted. If no channels are soloed, all unmuted channels are heard. |
| See also | `SetChannelMute()` |
GetChannelSolo

```c
SLresult (*GetChannelSolo) (  
    SLMuteSoloItf self,  
    SLuint8 chan,  
    SLboolean *pSolo  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the soloed state of a specified channel of a player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>chan</code></td>
<td>[in] Channel to query the solo state. The valid range is [0, n-1], where n is the number of audio channels in player’s audio format.</td>
</tr>
<tr>
<td><code>pSolo</code></td>
<td>[out] Pointer to a location to receive the solo status of the specified channel. If set to true, the channel is soloed. If set to false, the channel is not soloed. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
GetNumChannels

```c
SLresult (*GetNumChannels) (  
   SLMuteSoloItf self,  
   SLuint8 *pNumChannels  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the number of audio channels contained in the player’s audio format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
8.29 SLOObjectItf

Description

The SLOObjectItf interface provides essential utility methods for all objects. Such functionality includes the destruction of the object, realization and recovery, acquisition of interface pointers, a callback for runtime errors, and asynchronous operation termination.

A maximum of one asynchronous operation may be performed by an object at any given time. Trying to invoke an asynchronous operation when an object is already processing an asynchronous call is equivalent to aborting the first operation, then invoking the second one.

SLOObjectItf is an implicit interface of all object types and is automatically available upon creation of every object.

Please refer to section 3.1.1 for details on the object states.

This interface is supported on all objects [see section 7].

See Appendix B: and Appendix C: for examples using this interface.

Priority

This interface exposes a control for setting an object’s priority relative to the other objects under control of the same instance of the engine. This priority provides a hint that the implementation can use when there is resource contention between objects.

Given resource contention between objects, an implementation will give preference to the object with the highest priority. This may imply that the implementation takes resources from one object to give to another if the two objects are competing for the same resources and the latter has higher priority. Given two objects of identical priority competing for resources, the implementation, by default, leaves the resources with the object that acquired them first. However, an application may override this behavior by setting the pre-emptable flag on an object. The implementation may steal resources from a “pre-emptable” object to give to another object of the same priority even when the second object is realized after the first. If both objects have the preemptable flag set, the implementation observes the default resource allocation behavior, that is, it leaves resources with the object that acquired them first.

Different objects may require entirely different resources. For this reason, it is possible that an object of high priority may have its resources stolen before an object of low priority. For example, a high-priority object may require access to dedicated hardware on the device while the low-priority object does not. If this dedicated hardware is demanded by the system, the resources may need to be stolen from the higher priority object, leaving the low priority object in the Realized state.
Loss of Control

This interface also contains a notification mechanism (via slObjectCallback()) to tell the current application A that another entity (such as another application B or the system) has taken control of a resource, but the application A is still allowed to use it (without being able to control it). See the related object event macros (SL_OBJECT_EVENT_ITF_CONTROL_TAKEN, SL_OBJECT_EVENT_ITF_CONTROL_RETURNED and SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED [see section 9.2.27]) and the error code SL_RESULT_CONTROL_LOST [see section 9.2.42] for details.

Prototype

```c
extern const SLInterfaceID SL_IID_OBJECT;

struct SLObjectItf_;
typedef const struct SLObjectItf_ * const * SLObjectItf;

struct SLObjectItf_ {
    SLresult (*Realize) (SLObjectItf self, SLboolean async);
    SLresult (*Resume) (SLObjectItf self, SLboolean async);
    SLresult (*GetState) (SLObjectItf self, SLuint32 * pState);
    SLresult (*GetInterface) (SLObjectItf self, const SLInterfaceID iid, void * pInterface);
    SLresult (*RegisterCallback) (SLObjectItf self, slObjectCallback callback, void * pContext);
    void (*AbortAsyncOperation) (SLObjectItf self);
    void (*Destroy) (SLObjectItf self);
    SLresult (*SetPriority) (SLObjectItf self, SLint32 priority, SLboolean preemptable);
};
```
```c
SLresult (*GetPriority) (  
  SLObjecItf self,  
  SLint32 *pPriority,  
  SLboolean *pPreemptable  
);  
SLresult (*SetLossOfControlInterfaces) (  
  SLObjecItf self,  
  SLint16 numInterfaces,  
  SLInterfaceID * pInterfaceIDs,  
  SLboolean enabled  
);  
```

Interface ID

79216360-ddd7-11db-ac16-0002a5d5c51b

Defaults

The object is in Unrealized state.

No callback is registered.

Priority: `SL_PRIORITY_NORMAL`

Preemptable by object of same priority that is realized later than this object:

`SL_BOOLEAN_FALSE`
Callbacks

slObjectCallback

typedef void (SLAPIENTRY *slObjectCallback) (
 SLObjectItf caller,
 const void * pContext,
 SLuint32 event,
 SLresult result,
 SLuint32 param,
 void * pInterface
);

<table>
<thead>
<tr>
<th>Description</th>
<th>A callback function, notifying of a runtime error, termination of an asynchronous call or change in the object’s resource state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>caller [in] Interface which invoked the callback.</td>
</tr>
<tr>
<td>pContext</td>
<td>pContext [in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td>event</td>
<td>event [in] One of the SL_OBJECT_EVENT macros.</td>
</tr>
<tr>
<td>result</td>
<td>result [in] If the event is SL_OBJECT_EVENT_RUNTIME_ERROR, result contains the error code. If the event is SL_OBJECT_EVENT_ASYNC_TERMINATION, result contains the asynchronous function return code. For other values of event, this parameter should be ignored.</td>
</tr>
<tr>
<td>param</td>
<td>param [in] If event is SL_OBJECT_EVENT_RUNTIME_ERROR, SL_OBJECT_EVENT_RESOURCES_LOST or SL_OBJECT_EVENT_ASYNC_TERMINATION, param contains the state of the object after the event. For other values of event, this parameter should be ignored.</td>
</tr>
<tr>
<td>pInterface</td>
<td>pInterface [in] If event is SL_OBJECT_EVENT_ITF_CONTROL_TAKEN, SL_OBJECT_EVENT_ITF_CONTROL_RETURNED or SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED, pInterface contains the interface affected. For other values of event, this parameter should be ignored.</td>
</tr>
<tr>
<td>Comments</td>
<td>Please note the restrictions applying to operations performed from within callback context, in section 3.3.</td>
</tr>
<tr>
<td>See also</td>
<td>RegisterCallback()</td>
</tr>
</tbody>
</table>
Methods

Realize

```c
SLresult (*Realize) (  
    SLObjectItf self,  
    SLboolean async  
);
```

Description
Transitions the object from Unrealized state to Realized state, either synchronously or asynchronously.

Pre-conditions
The object must be in Unrealized state.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>async</td>
<td>[in] If SL_BOOLEAN_FALSE, the method will block until termination. Otherwise, the method will return SL_RESULT_SUCCESS, and will be executed asynchronously. On termination, the s1ObjectCallback() will be invoked, if registered, with the SL_OBJECT_EVENT_ASYNC_TERMINATION. The result parameter of the s1ObjectCallback() will contain the result code of the function. However, if the implementation is unable to initiate the asynchronous call SL_RESULT_RESOURCE_ERROR will be returned.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULTRESOURCE_ERROR
- SL_RESULT_PRECONDITIONS_VIOLATED
- SL_RESULT_MEMORY_FAILURE
- SL_RESULT_IO_ERROR
- SL_RESULT_CONTENT_CORRUPTED
- SL_RESULT_CONTENT_UNSUPPORTED
- SL_RESULT_CONTENT_NOT_FOUND
- SL_RESULT_PERMISSION_DENIED

Comments
Realizing the object acquires the resources required for its functionality. The operation may fail if insufficient resources are available. In such a case, the application may wait until resources become available and a SL_OBJECT_EVENT_RESOURCES_AVAILABLE event is received, and then retry the realization. Another option is to try and increase the object’s priority, thus increasing the likelihood that the object will steal another object’s resources.

See also
Section 3.1.4, SL_OBJECT_EVENT_RESOURCES_AVAILABLE [see section 9.2.27]
Resume

```c
SLresult (*Resume) (  
   SLObjectItf self,  
   SLboolean async  
);
```

Description
Transitions the object from Suspended state to Realized state, either synchronously or asynchronously.

Pre-conditions
The object must be in Suspended state.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>async</td>
<td>[in]</td>
<td>If SL_BOOLEAN_FALSE, the method will block until termination. Otherwise, the method will return SL_RESULT_SUCCESS and will be executed asynchronously. On termination, the slObjectCallback() will be invoked, if registered, with the SL_OBJECT_EVENT_ASYNC_TERMINATION. The result parameter of the slObjectCallback() will contain the result code of the function. However, if the implementation is unable to initiate the asynchronous call SL_RESULT_RESOURCE_ERROR will be returned.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_RESOURCE_ERROR
- SL_RESULT_PRECONDITIONS_VIOLATED

Comments
Resuming the object acquires the resources required for its functionality. The operation may fail if insufficient resources are available. In such a case, the application may wait until resources become available and an SL_OBJECT_EVENT_RESOURCES_AVAILABLE event is received, and then retry the resumption. Another option is to try and increase the object’s priority, thus increasing the likelihood that the object will steal another object’s resources.

See also
Section 3.1.4, SL_OBJECT_EVENT_RESOURCES_AVAILABLE [see section 9.2.27]
GetState

```c
SLresult (*GetState) (  
    SLObjectItf self,  
    SLuint32 * pState  
);
```

Description
Retrieves the current object state.

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pState</code></td>
<td>[out]</td>
<td>Pointer to the current state of the object. One of the <code>SL_OBJECT_STATE</code> macros will be written as result [see section 9.2.28]. This must be non-NULL.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

See also
Section 3.1.4
GetInterface

<table>
<thead>
<tr>
<th>Description</th>
<th>Obtains an interface exposed by the object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconditions</td>
<td>The object is in the Realized state.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>iid</td>
<td>[in] The interface type ID.</td>
</tr>
<tr>
<td>pInterface</td>
<td>[out] This should be a non-NULL pointer to a variable of the interface's type – for example, if a SLObjectItf is retrieved, this parameter should be of type SLObjectItf *.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SLRESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SLRESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td></td>
<td>SLRESULT_PRECONDITIONS_VIOLATED</td>
</tr>
<tr>
<td>Comments</td>
<td>If the object does not expose the requested interface type, the return code will be SLRESULT_FEATURE_UNSUPPORTED.</td>
</tr>
<tr>
<td>See also</td>
<td>Section 3.1.4</td>
</tr>
</tbody>
</table>

```c
SLresult (*GetInterface) ( 
    SLObjectItf self, 
    const SLInterfaceID iid, 
    void * pInterface
);
```
RegisterCallback

```c
SLresult (*RegisterCallback) (  
    SLObjectItf self,  
    s1ObjectCallback callback,  
    void * pContext  
);  
```

Description
Registers a callback on the object that executes when a runtime error occurs or an asynchronous operation terminates.

Parameters
- `callback` [in] Address of the result callback. If `NULL`, the callback is disabled.
- `pContext` [in] User context data that is to be returned as part of the callback method.

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

Comments
The callback will report only runtime errors and results of calls to asynchronous functions.

See also
`s1ObjectCallback`

AbortAsyncOperation

```c
void (*AbortAsyncOperation) (  
    SLObjectItf self  
);  
```

Description
Aborts asynchronous call currently processed by the object. This method affects asynchronous calls initiated from `SLObjectItf` or `XADynamicInterfaceManagementItf` only. If no such call is being processed, the call is ignored.

If a callback is registered, it will be invoked, with a `SL_OBJECT_EVENT_ASYNC_TERMINATION` as event and `SL_RESULT_OPERATION_ABORTED` as return code.

Parameters

Return value
None.

Comments
The method is meant for graceful timeout or user-initiated abortion of asynchronous calls.
Destroy

```c
void (*Destroy) (
    SLObjectItf self
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Destroys the object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return value</td>
<td>None.</td>
</tr>
</tbody>
</table>

Comments

Destroy implicitly transfers the object to Unrealized state, thus freeing any resources allocated to the object prior to freeing it. All references to interfaces belonging to this object become invalid and may cause undefined behavior if used. All pending asynchronous operations are aborted, as if `AbortAsyncOperations()` has been called.
SetPriority

```c
SLresult (*SetPriority) (  
    SLObjectItf self,  
    SLint32 priority,  
    SLboolean preemptable  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Set the object’s priority.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>[in] The priority. The valid range for this parameter is ([\text{min SLint32}, \text{max SLint32}]). The larger the number, the higher the priority: zero is the default priority; negative numbers indicate below normal priority; and positive numbers indicate above normal priority.</td>
</tr>
<tr>
<td>preemptable</td>
<td>[in] True indicates that objects of identical priority that are realized after this object may be given resource allocation priority. False indicates that the object should have resource allocation preference over objects of the same priority realized after this object.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Although it is possible to set any priority within the specified range, <code>SL_PRIORITY</code> [see section 9.2.35] defines a fixed set of priorities for use with this method.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
GetPriority

Signature:

```c
SLresult (*GetPriority) (
    struct SLObjectItf self,
    SLint32 *pPriority,
    SLboolean *pPreemptable
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the object’s priority.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pPriority</td>
<td>[out] Pointer to a location to receive the object’s priority. This must be non-NULL.</td>
</tr>
<tr>
<td>pPreemptable</td>
<td>[out] Pointer to a location to receive the object’s pre-emptable status. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
<tr>
<td>SetLossOfControlInterfaces</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Sets/unsets loss of control functionality for a list of interface IDs. The default value of the enabled flag is determined by the global setting (see SL_ENGINEOPTION_LOSSOFCONTROL 9.2.15).</td>
</tr>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>numInterfaces</td>
<td>[in] The length of the pInterfaceIDs array (ignored if pInterfaceIDs is NULL).</td>
</tr>
<tr>
<td>pInterfaceIDs</td>
<td>[in] Array of interface IDs representing the interfaces impacted by the enabled flag.</td>
</tr>
<tr>
<td>enabled</td>
<td>[in] If SL_BOOLEAN_TRUE, loss of control functionality is enabled for all interfaces represented by pInterfaceIDs. If SL_BOOLEAN_FALSE, loss of control functionality is disabled for all interfaces represented by pInterfaceIDs.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>A call to this method overrides the global setting for loss of control functionality for the specified list of interfaces.</td>
</tr>
</tbody>
</table>
8.30 SLOutputMixItf

Description

SLOutputMixItf is an interface for interacting with an output mix, including querying for
the associated destination output devices, registering for the notification of changes to
those outputs, and requesting changes to an output mix’s associated devices.

This interface is supported on the Output Mix [see section 7.9] object.

Prototype

extern const SLInterfaceID SL_IID_OUTPUTMIX;

struct SLOutputMixItf_;
typedef const struct SLOutputMixItf_ * const * SLOutputMixItf;

struct SLOutputMixItf_ {
 SLresult (*GetDestinationOutputDeviceIDs) (
 SLOutputMixItf self,
 SLint32 *pNumDevices,
 SLuint32 *pDeviceIDs
);
 SLresult (*RegisterDeviceChangeCallback) (
 SLOutputMixItf self,
 slMixDeviceChangeCallback callback,
 void *pContext
);
 SLresult (*ReRoute) (
 SLOutputMixItf self,
 SLint32 numOutputDevices,
 SLuint32 *pOutputDeviceIDs
);
};

Interface ID

97750f60-1dd7-11db-92b1-0002a5d5c51b

Defaults

An output mix defaults to device ID values specific to the implementation.
Callbacks

`slMixDeviceChangeCallback`

```c
typedef void (SLAPIENTRY *slMixDeviceChangeCallback) (SLOutputMixItf caller, void *pContext);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Executes whenever an output mix changes its set of destination output devices. Upon this notification, the application may query for the new set of devices via the <code>SLOutputMixItf</code> interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>caller</td>
<td>[in] Interface on which this callback was registered.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td>Comments</td>
<td>none</td>
</tr>
<tr>
<td>See Also</td>
<td><code>RegisterDeviceChangeCallback()</code></td>
</tr>
</tbody>
</table>
Methods

GetDestinationOutputDeviceIDs

```c
SLresult (*GetDestinationOutputDeviceIDs) (
    SLOutputMixItf self,
    SLint32 *pNumDevices,
    SLuint32 *pDeviceIDs
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the device IDs of the destination output devices currently associated with the output mix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pNumDevices</code></td>
<td><code>[in/out]</code> As an input, specifies the length of the <code>pDeviceIDs</code> array (ignored if <code>pDeviceIDs</code> is NULL). As an output, specifies the number of destination output device IDs associated with the output mix.</td>
</tr>
<tr>
<td><code>pDeviceIDs</code></td>
<td><code>[out]</code> Populated by the call with the list of device IDs (provided that <code>pNumDevices</code> is equal to or greater than the number of actual device IDs). If <code>pNumDevices</code> is less than the number of actual device IDs, the error code <code>SL_RESULT_BUFFER_INSUFFICIENT</code> is returned. Note: IDs may include <code>SL_DEFAULTDEVICEID_AUDIOOUTPUT</code>. This must be non-NULL.</td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_BUFFER_INSUFFICIENT`

Comments

None

See also

None
RegisterDeviceChangeCallback

<table>
<thead>
<tr>
<th>Description</th>
<th>Registers a callback to notify the application when there are changes to the device IDs associated with the output mix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>callback</td>
<td>[in] Callback to receive the changes in device IDs associated with the output mix.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
ReRoute

```c
SLresult (*ReRoute)(
    SLOutputMixItf self,
    SLint32 numOutputDevices,
    SLuint32 *pOutputDeviceIDs
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Requests a change to the specified set of output devices on an output mix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>numOutputDevices</td>
<td>[in] Number of output devices specified.</td>
</tr>
<tr>
<td>pOutputDeviceIDs</td>
<td>[in] List of the devices specified. (Note: IDs may include SL_DEFAULTDEVICEID_AUDIOOUTPUT)</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>This method simply requests for a change in routing. The implementation may choose not to fulfill the request. If it does not fulfill the request, the method returns SL_RESULT_FEATURE_UNSUPPORTED.</td>
</tr>
</tbody>
</table>

PROFILE NOTE

In the Phone profile, audio can be routed to multiple simultaneous outputs, provided the underlying implementation supports such routing. For implementations that do not support such routing, this method returns SL_FEATURE_UNSUPPORTED.
8.31 SLPitchItf

Description

The SLPitchItf interface controls a pitch shift applied to a sound. The pitch shift is specified in permilles:

- A value of 1000 ‰ indicates no change in pitch.
- A value of 500 ‰ indicates causing a pitch shift of –12 semitones (one octave decrease).
- A value of 2000 ‰ indicates a pitch shift of 12 semitones (one octave increase).

Changing the pitch with this interface does not change the playback rate.

Prototype

```c
extern const SLInterfaceID SL_IID_PITCH;

struct SLPitchItf;
typedef const struct SLPitchItf_ * const * SLPitchItf;

struct SLPitchItf_ {
    SLresult (*SetPitch) (SLPitchItf self, SLpermille pitch);
    SLresult (*GetPitch) (SLPitchItf self, SLpermille *pPitch);
    SLresult (*GetPitchCapabilities) (SLPitchItf self, SLpermille *pMinPitch, SLpermille *pMaxPitch);
};
```

Interface ID
c7e8ee00-ddd7-11db-a42c-0002a5d5c51b

Defaults

Pitch: 1000 ‰
Methods

SetPitch

```c
SLresult (*SetPitch) (
    SLPitchItf self,
    SLpermille pitch
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets a player’s pitch shift.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pitch [in]</td>
<td>The pitch shift factor in permille. The range supported by this parameter is both implementation and content-dependent and can be determined using the GetPitchCapabilities() method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>As the Doppler effect may be implemented internally as a pitch shift and the maximum pitch shift may be capped, in some situations, such as when the pitch shift due to Doppler exceeds the device capabilities, this method may appear to have no audible effect, even though the method succeeded. In this case, the effect will be audible when the amount of Doppler is reduced.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
GetPitch

```c
SLresult (*GetPitch) (
    SLPitchItf self,
    SLpermille *pPitch,
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the player’s current pitch shift.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pPitch</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
GetPitchCapabilities

```c
SLresult (*GetPitchCapabilities) (  
  SLPitchItf self,  
  SLpermille *pMinPitch,  
  SLpermille *pMaxPitch
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the player’s pitch shifting capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMinPitch</td>
<td>[out] Pointer to a location to receive the minimum pitch shift supported for the player. If <code>NULL</code>, the minimum pitch is not reported.</td>
</tr>
<tr>
<td>pMaxPitch</td>
<td>[out] Pointer to a location to receive the maximum pitch shift supported for the player. If <code>NULL</code>, the maximum pitch is not reported.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>The values returned by this method are the absolute minimum and maximum values supported by the implementation for the player when no other changes, such as Doppler-related changes, are applied.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
8.32 SLPlayItf

Description

SLPlayItf is an interface for controlling the playback state of an object. The playback state machine is as follows:

Table 11: Play Head Position in Different Play States

<table>
<thead>
<tr>
<th>Play State</th>
<th>Head forced to beginning</th>
<th>Prefetching</th>
<th>Head trying to move</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopped</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paused</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Playing</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

This interface is supported on the Audio Player [see section 7.2] and MIDI Player [see section 7.8] objects.

See Appendix B: and Appendix C: for examples using this interface.
Prototype

extern const SLInterfaceID SL_IID_PLAY;

struct SLPlayItf;
typedef const struct SLPlayItf_ * const * SLPlayItf;

struct SLPlayItf_ {
 SLresult (*SetPlayState) (;
 SLPlayItf self,
 SLuint32 state
);
 SLresult (*GetPlayState) (;
 SLPlayItf self,
 SLuint32 *pState
);
 SLresult (*GetDuration) (;
 SLPlayItf self,
 SLmillisecond *pMsec
);
 SLresult (*GetPosition) (;
 SLPlayItf self,
 SLmillisecond *pMsec
);
 SLresult (*RegisterCallback) (;
 SLPlayItf self,
 slPlayCallback callback,
 void *pContext
);
 SLresult (*SetCallbackEventsMask) (;
 SLPlayItf self,
 SLuint32 eventFlags
);
 SLresult (*GetCallbackEventsMask) (;
 SLPlayItf self,
 SLuint32 *pEventFlags
);
 SLresult (*SetMarkerPosition) (;
 SLPlayItf self,
 SLmillisecond mSec
);
 SLresult (*ClearMarkerPosition) (;
 SLPlayItf self
);
SLresult (*GetMarkerPosition) (
 SLPlayItf self,
 SLmillisecond *pMsec
);
SLresult (*SetPositionUpdatePeriod) (
 SLPlayItf self,
 SLmillisecond mSec
);
SLresult (*GetPositionUpdatePeriod) (
 SLPlayItf self,
 SLmillisecond *pMsec
);
Interface ID

ef0bd9c0-ddd7-11db-bf49-0002a5d5c51b

Defaults

Initially, the playback state is `SL_PLAYSTATE_STOPPED`, the position is at the beginning of the content, the update period is one second, and there are no markers set nor callbacks registered and the callback event flags are cleared.

Callbacks

<table>
<thead>
<tr>
<th><code>slPlayCallback</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>typedef void (SLAPIENTRY *slPlayCallback) (</code></td>
</tr>
<tr>
<td><code>SLPlayItf caller,</code></td>
</tr>
<tr>
<td><code>void *pContext,</code></td>
</tr>
<tr>
<td><code>SLuint32 event</code></td>
</tr>
<tr>
<td><code>);</code></td>
</tr>
</tbody>
</table>

Description	Notifies the player application of a playback event.
Parameters	
caller	[in] Interface instantiation on which the callback was registered.
pContext	[in] User context data that is supplied when the callback method is registered.
event	[in] Indicates which event has occurred (see `SL_PLAYEVENT` macros in section 9.2.31).
Comments	None
See also	RegisterCallback()
Methods

SetPlayState

```
SLresult (*SetPlayState) (  
    SLPlayItf self,  
    SLuint32 state  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Requests a transition of the player into the given play state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None. The player may be in any state.</td>
</tr>
<tr>
<td></td>
<td>state</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PERMISSION_DENIED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTENT_CORRUPTED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTENT_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>All state transitions are legal. The state defaults to SL_PLAYSTATE_STOPPED. Note that although the state change is immediate, there may be some latency between the execution of this method and its effect on behavior. In this sense, a player’s state technically represents the application’s intentions for the player. Note that the player’s state has an effect on the player’s prefetch status (see SLPrefetchStatusItf for details). The player may return SL_RESULT_PERMISSION_DENIED, SL_RESULT_CONTENT_CORRUPTED or SL_RESULT_CONTENT_UNSUPPORTED respectively if, at the time a state change is requested, it detects insufficient permissions, corrupted content, or unsupported content. When the player reaches the end of content, the play state will transition to paused and the play cursor will remain at the end of the content.</td>
</tr>
</tbody>
</table>
GetPlayState

```c
SLresult (*GetPlayState) (  
    SLPlayItf self,  
    SLuint32 *pState  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the player's current play state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pState</td>
<td>[out] Pointer to a location to receive the current play state of the player. The state returned is one of the <code>SL_PLAYSTATE</code> macros [see section 9.2.32]. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

GetDuration

```c
SLresult (*GetDuration) (  
    SLPlayItf self,  
    SLmillisecond *pMsec  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the duration of the current content, in milliseconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMsec</td>
<td>[out] Pointer to a location to receive the number of milliseconds corresponding to the total duration of this current content. If the duration is unknown, this value shall be <code>SL_TIME_UNKNOWN</code> [see section 9.2.47]. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
GetPosition

```c
SLresult (*GetPosition) (  
    SLPlayItf self,  
    SLmillisecond *pMsec
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the current position of the playback head relative to the beginning of the content.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMsec</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The returned value is bounded between 0 and the duration of the content. In the case where the data source is a buffer queue, the current position is the cumulative duration of all buffers since the last buffer queue Clear() method. Note that the position is defined relative to the content playing at 1x forward rate; positions do not scale with changes in playback rate.</td>
</tr>
</tbody>
</table>
RegisterCallback

```c
SLresult (*RegisterCallback) (
    SLPlayItf self,
    slPlayCallback callback,
    void *pContext
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the playback callback function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>callback</td>
<td>[in] Callback function invoked when one of the specified events occurs. A NULL value indicates that there is no callback.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The callback function defaults to NULL.</td>
</tr>
<tr>
<td></td>
<td>The context pointer can be used by the application to pass state to the callback function.</td>
</tr>
<tr>
<td>SetCallbackEventsMask</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| **SLresult (*SetCallbackEventsMask) (
 SLPlayItf self,
 SLuint32 eventFlags
);** | |
| **Description** | Enables/disables notification of playback events. | |
| **Pre-conditions** | None |
| **Parameters** | |
| eventFlags | [in] | Bitmask of play event flags (see SL_PLAYEVENT macros in section 9.2.31) indicating which callback events are enabled. The presence of a flag enables notification for the corresponding event. The absence of a flag disables notification for the corresponding event. |
| **Return value** | The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID |
| **Comments** | The callback event flags default to all flags cleared. |

<table>
<thead>
<tr>
<th>GetCallbackEventsMask</th>
<th></th>
</tr>
</thead>
</table>
| **SLresult (*GetCallbackEventsMask) (
 SLPlayItf self,
 SLuint32 *pEventFlags
);** | |
| **Description** | Queries for the notification state (enabled/disabled) of playback events. | |
| **Pre-conditions** | None |
| **Parameters** | |
| pEventFlags | [out] | Pointer to a location to receive the bitmask of play event flags (see SL_PLAYEVENT macros in section 9.2.31) indicating which callback events are enabled. This must be non-NULL. |
| **Return value** | The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID |
| **Comments** | None |
SetMarkerPosition

Signature
```
SLresult (*SetMarkerPosition) (
    SLPlayItf self,
    SLmillisecond mSec
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the position of the playback marker.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>mSec</td>
<td>[in] Position of the marker expressed in milliseconds and relative to the beginning of the content. Must be between 0 and the reported duration of the content.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The player will notify the application when the playback head passes through the marker via a callback with an SL_PLAYEVENT_HEADATMARKER event [see section 9.2.31]. By default, there is no marker position defined.</td>
</tr>
<tr>
<td>See Also</td>
<td>ClearMarkerPosition()</td>
</tr>
</tbody>
</table>

ClearMarkerPosition

Signature
```
SLresult (*ClearMarkerPosition) (
    SLPlayItf self
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Clears marker.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>This function succeeds even if the marker is already clear.</td>
</tr>
<tr>
<td>See Also</td>
<td>SetMarkerPosition()</td>
</tr>
</tbody>
</table>
GetMarkerPosition

```c
SLresult (*GetMarkerPosition) ( 
    SLPlayItf self, 
    SLmillisecond *pMsec
);
```

Description
Queries the position of playback marker.

Pre-conditions
A marked has been set (using `SetMarkerPosition()`)

Parameters
- `pMsec` [out] Pointer to a location to receive the position of the marker expressed in milliseconds, relative to the beginning of the content.

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_PRECONDITIONS_VIOLATED`

Comments
None

See Also
`SetMarkerPosition()`, `ClearMarkerPosition()`

SetPositionUpdatePeriod

```c
SLresult (*SetPositionUpdatePeriod) ( 
    SLPlayItf self, 
    SLmillisecond mSec
);
```

Description
Sets the interval between periodic position notifications.

Pre-conditions
None

Parameters
- `mSec` [in] Period between position notifications in milliseconds.

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

Comments
The player will notify the application when the playback head passes through the positions implied by the specified period. Those positions are defined as the whole multiples of the period relative to the beginning of the content. By default, the update period is 1000 milliseconds.
GetPositionUpdatePeriod

```c
SLresult (*GetPositionUpdatePeriod) ( 
    SLPlayItf self, 
    SLmillisecond *pMsec
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the interval between periodic position notifications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:
 SL_RESULT_SUCCESS
 SL_RESULT_PARAMETER_INVALID |
| Comments | None |
8.33 SLPlaybackRateItf

Description

SLPlaybackRateItf is an interface for controlling setting and retrieving the rate at which an object presents data. Rates are expressed as a permille type (namely, parts per thousand):

- Negative values indicate reverse presentation.
- A value of 0‰ indicates paused presentation.
- Positive values less than 1000‰ indicate slow forward rates.
- A value of 1000‰ indicates normal 1X forward playback.
- Positive values greater than 1000‰ indicate fast forward rates.
Prototype

```c
extern const SLInterfaceID SL_IID_PLAYBACKRATE;

struct SLPlaybackRateItf_;  
typedef const struct SLPlaybackRateItf_ * const * SLPlaybackRateItf;

struct SLPlaybackRateItf_ {
    SLresult (*SetRate)(
        SLPlaybackRateItf self,
        SLpermille rate
    );
    SLresult (*GetRate)(
        SLPlaybackRateItf self,
        SLpermille *pRate
    );
    SLresult (*SetPropertyConstraints)(
        SLPlaybackRateItf self,
        SLuint32 constraints
    );
    SLresult (*GetProperties)(
        SLPlaybackRateItf self,
        SLuint32 *pProperties
    );
    SLresult (*GetCapabilitiesOfRate)(
        SLPlaybackRateItf self,
        SLpermille rate,
        SLuint32 *pCapabilities
    );
    SLresult (*GetRateRange) (
        SLPlaybackRateItf self,
        SLuint8 index,
        SLpermille *pMinRate,
        SLpermille *pMaxRate,
        SLpermille *pStepSize,
        SLuint32 *pCapabilities
    );
};
```

Interface ID

2e3b2a40-ddda-11db-a349-0002a5d5c51b

Defaults

The rate value defaults to 1000‰ (that is, normal 1X forward playback).
SetRate

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the rate of presentation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td></td>
<td>rate [in] Desired rate.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>1000 is the default rate. The application may query supported rates via the GetRateRange() method. The SL_RESULT_FEATURE_UNSUPPORTED return value accommodates the circumstance where the content being played does not afford adjustments of the playback rate.</td>
</tr>
</tbody>
</table>

GetRate

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the rate of presentation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td></td>
<td>pRate [out] Pointer to a location to receive the rate of the player. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetPropertyConstraints

```c
SLresult (*SetPropertyConstraints) (  
    SLPlaybackRateItf self,  
    SLuint32 constraints  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the current rate property constraints.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>self</code> ([in])</td>
<td>Interface self-reference.</td>
</tr>
<tr>
<td><code>constraints</code> ([in])</td>
<td>Bitmask of the allowed rate properties requested (see <code>SL_RATEPROP</code> macros in section 9.2.38). An implementation may choose any of the given properties to implement rate and none of the excluded properties. If the bitmask is not well-formed, this method returns <code>SL_RESULT_PARAMETER_INVALID</code>. If the constraints cannot be satisfied, this method returns <code>SL_RESULT_FEATURE_UNSUPPORTED</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SL_RESULT_SUCCESS</code></td>
<td></td>
</tr>
<tr>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
<td></td>
</tr>
<tr>
<td><code>SL_RESULT_FEATURE_UNSUPPORTED</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
<th>Note that rate property capabilities may vary from one rate to another. This implies that a setting supported for one rate may be unsupported for another. The default audio properties are <code>SL_RATEPROP_NOPITCHCORAUDIO</code>.</th>
</tr>
</thead>
</table>
GetProperties

| SLresult (*GetProperties) (
| SLPlaybackRateItf self,
| SLuint32 *pProperties
<table>
<thead>
<tr>
<th>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Pre-conditions</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>pProperties</td>
</tr>
<tr>
<td>Return value</td>
</tr>
</tbody>
</table>
| SL_RESULT_SUCCESS
| SL_RESULT_PARAMETER_INVALID
| **Comments** | None |
GetCapabilitiesOfRate

| SLresult (*GetCapabilitiesOfRate) (|
| SLPlaybackRateItf self, |
| SLpermille rate, |
| SLuint32 *pCapabilities |
|) ; |

Description	Gets the capabilities of the specified rate.
Pre-conditions	None.
	rate [in] Rate for which the capabilities are being queried.
	pCapabilities [out] Pointer to a location to receive the bitmask expressing capabilities of the given rate in terms of rate properties (see SL_RATEPROP macros in section 9.2.38).

Return value	The return value can be one of the following:
	SL_RESULT_SUCCESS
	SL_RESULT_PARAMETER_INVALID

| Comments | A application may also leverage this method to verify that a particular rate is supported. |
GetRateRange

```c
SLresult (*GetRateRange) (  
    SLPlaybackRateItf self,  
    SLuint8 index,  
    SLpermille *pMinRate,  
    SLpermille *pMaxRate,  
    SLpermille *pStepSize,  
    SLuint32 *pCapabilities  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the ranges of rates supported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>[in] Index of the range being queried. If an implementation supports n rate ranges, this value is between 0 and (n-1) and all values greater than n cause the method to return SL_RESULT_PARAMETER_INVALID.</td>
</tr>
<tr>
<td>pMinRate</td>
<td>[out] Pointer to a location to receive the minimum rate supported. May be negative or positive. Must be equal to or less than maxRate. This must be non-NULL.</td>
</tr>
<tr>
<td>pMaxRate</td>
<td>[out] Pointer to a location to receive the maximum rate supported. May be negative or positive. Must be equal to or greater than minRate. This must be non-NULL.</td>
</tr>
<tr>
<td>pStepSize</td>
<td>[out] Pointer to a location to receive the distance between one rate and an adjacent rate in the range. A value of zero denotes a continuous range. This must be non-NULL.</td>
</tr>
<tr>
<td>pCapabilities</td>
<td>[out] Pointer to a location to receive the bitmask of supported rate properties in the given range. The range of the bitmask is defined by the SL_RATEPROP macros [see section 9.2.38]. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>An implementation expresses the set of supported rates as one or more ranges. Each range is defined by the lowest and highest rates in the range, the step size between these bounds, and the rate properties of this range. If all rates an implementation supports are evenly spaced and have</td>
</tr>
</tbody>
</table>
same capabilities, `GetRateRange()` method may return a single range.

If not, the `GetRateRange()` method will return as many ranges as necessary in order to adequately express the set of rates (and associated properties) supported. In this case, the application must call `GetRateRange()` multiple times to query all the ranges; `GetRateRange()` returns only one range per call.

Rate range examples: Range 1 has a min of -4000‰, a max of -2000‰ and a step of 500‰. Range 2 has a min of -2000‰, a max of 2000‰, and a step of 0‰. Range 3 has a min of 2000‰, a max of 4000‰ and a step of 500‰.

Figure 36: Example rate ranges
8.34 SLPrefetchStatusItf

Description

SLPrefetchStatusItf is an interface for querying the prefetch status of a player.

The prefetch status is a continuum ranging from no data prefetched to the maximum amount of data prefetched. It includes a range where underflow may occur and a range where there is a sufficient amount of data present. The underflow and sufficient data ranges may not relate to fixed fill level positions, but be implementation dependent and dynamically vary based on factors as e.g. buffering length, consumption rate, communication latency, hysteresis, etc. The prefetch status interface allows an application to query for prefetch status or register prefetch status callbacks. The latency of status and fill level callbacks are implementation dependent.

One example usage of the SLPrefetchStatusItf is to order the player into paused state when receiving an underflow event and into play state when receiving a sufficient data event when playing network stored media sources. Another example usage is to display fill level percentage to the end user by using the callback and the GetFillLevel method.

<table>
<thead>
<tr>
<th>Underflow</th>
<th>Sufficient Data</th>
<th>Overflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 permille</td>
<td></td>
<td>1000 permille</td>
</tr>
</tbody>
</table>

Figure 37: Prefetch continuum range

This interface is supported on Audio Player [see section 7.2] and MIDI Player [see section 7.8] objects.

See section C.4 for an example using this interface.
Prototype

```c
extern const SLInterfaceID SL_IID_PREFETCHSTATUS;

struct SLPrefetchStatusItf_; 
typedef const struct SLPrefetchStatusItf_ 
* const * SLPrefetchStatusItf;

struct SLPrefetchStatusItf_ {
    SLresult (*GetPrefetchStatus) (      
        SLPrefetchStatusItf self,      
        SLuint32 *pStatus              
    ); 
    SLresult (*GetFillLevel) (          
        SLPrefetchStatusItf self,      
        SLpermille *pLevel             
    ); 
    SLresult (*RegisterCallback) (      
        SLPrefetchStatusItf self,      
        slPrefetchCallback callback,  
        void *pContext                
    ); 
    SLresult (*SetCallbackEventsMask) (  
        SLPrefetchStatusItf self,      
        SLuint32 eventFlags            
    ); 
    SLresult (*GetCallbackEventsMask) (  
        SLPrefetchStatusItf self,      
        SLuint32 *pEventFlags          
    ); 
    SLresult (*SetFillUpdatePeriod) (    
        SLPrefetchStatusItf self,      
        SLpermille period              
    ); 
    SLresult (*GetFillUpdatePeriod) (    
        SLPrefetchStatusItf self,      
        SLpermille *pPeriod            
    );
}
```

Interface ID

2a41ee80-ddd8-11db-a41f-0002a5d5c51b

Defaults

Initially, there is no callback registered, the fill update period is 100 permille, and the event flags are clear.
Callbacks

slPrefetchCallback

typedef void (SLAPIENTRY *slPrefetchCallback) (
 SLPrefetchStatusItf caller,
 void *pContext,
 SLuint32 event
);

Description
Notifies the player application of a prefetch event.

Parameters
- **caller** [in] Interface instantiation on which the callback was registered.
- **pContext** [in] User context data that is supplied when the callback method is registered.
- **event** [in] Event that has occurred (see SL_PREFETCHEVENT macros in section 9.2.33).

Comments
None

See also
RegisterCallback()

Methods

GetPrefetchStatus

SLresult (*GetPrefetchStatus) (
 SLPrefetchStatusItf self,
 SLuint32 *pStatus
);

Description
Gets the player’s current prefetch status.

Pre-conditions
None.

Parameters
- **pStatus** [out] Pointer to a location to receive the current prefetch status of the player. The status returned is one of the SL_PREFETCHSTATUS defines [see section 9.2.34]. This must be non-NULL.

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
None
GetFillLevel

```c
SLresult (*GetFillLevel) (  
    SLPrefetchStatusItf self,  
    SLpermille *pLevel  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the fill level of the prefetch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pLevel</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td>Comments</td>
<td>The fill level is not tied to specific buffer within a player, but indicates more abstractly the progress a player has made in preparing data for playback.</td>
</tr>
</tbody>
</table>
RegisterCallback

```c
SLresult (*RegisterCallback) (  
    SLPrefetchStatusItf self,  
    slPrefetchCallback callback,  
    void *pContext  
);  
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the prefetch callback function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>callback</td>
</tr>
<tr>
<td></td>
<td>pContext</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Callback function defaults to NULL. The context pointer can be used by the application to pass state to the callback function.</td>
</tr>
<tr>
<td>See Also</td>
<td>SL_PREFETCHEVENT macros [see section 9.2.33].</td>
</tr>
</tbody>
</table>
SetCallbackEventsMask

```
SLresult (*SetCallbackEventsMask) (  
    SLPrefetchStatusItf self,  
    SLuint32 eventFlags  
);  
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the notification state of the prefetch events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>eventFlags [in]</td>
<td>Bitmask of prefetch event flags (see SL_PREFETCHEVENT macros in section 9.2.33) indicating which callback events are enabled.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Event flags default to all flags cleared.</td>
</tr>
</tbody>
</table>

GetCallbackEventsMask

```
SLresult (*GetCallbackEventsMask) (  
    SLPrefetchStatusItf self,  
    SLuint32 *pEventFlags  
);  
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the notification state of the prefetch events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pEventFlags [out]</td>
<td>Pointer to a location to receive the bitmask of prefetch event flags (see SL_PREFETCHEVENT macros in section 9.2.33) indicating which callback events are enabled. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetFillUpdatePeriod

```c
SLresult (*SetFillUpdatePeriod) (  
  SLPrefetchStatusItf self,  
  SLpermille period  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the notification period for fill level updates. This period implies the set discrete fill level values that will generate notifications from the player.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>
 period [in] Non-zero period between fill level notifications in permille units. |
| Return value | The return value can be one of the following:
 SL_RESULT_SUCCESS
 SL_RESULT_PARAMETER_INVALID |
| Comments | Non-zero period between fill level notifications in permille. Notifications will occur at 0 permille (i.e. empty) and at whole number increments of the period from 0. For instance, if the period is 200 permille (i.e. 20%), then the player will generate a notification when 0%, 20%, 40%, 60%, 80%, or 100% full. The default period is 100 permille. |

GetFillUpdatePeriod

```c
SLresult (*GetFillUpdatePeriod) (  
  SLPrefetchStatusItf self,  
  SLpermille *pPeriod  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the notification period for fill level updates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>
 pPeriod [out] Pointer to a location to receive the period between fill level notifications in permille units. This must be non-NULL. |
| Return value | The return value can be one of the following:
 SL_RESULT_SUCCESS
 SL_RESULT_PARAMETER_INVALID |
| Comments | **None** |
8.35 SLPresetReverbItf

Description

This interface allows an application to configure the global reverb using a reverb preset. This is primarily used for adding some reverb in a music playback context. Applications requiring control over a more advanced environmental reverb are advised to use the SLEnvironmentalReverbItf interface, where available.

When this interface is exposed on the Output Mix, it acts as an auxiliary effect; for reverb to be applied to a player’s output, the SLEffectSendItf interface [see section 8.14] must be exposed on the player.

The following restriction must be adhered to when exposing this interface:

- It is not possible to expose this interface while the SLEnvironmentalReverbItf interface of the same object is already exposed.

This interface is supported on Output Mix [see section 7.9] objects. See section C.2 for an example using this interface.

Prototype

```c
extern const SLInterfaceID SL_IID_PRESETREVERB;

struct SLPresetReverbItf_;  
typedef const struct SLPresetReverbItf_ * const * SLPresetReverbItf;

struct SLPresetReverbItf_ {  
   SLresult (*SetPreset) (  
      SLPresetReverbItf self,  
      SLuint16 preset  
   );  
   SLresult (*GetPreset) (  
      SLPresetReverbItf self,  
      SLuint16 *pPreset  
   );
};
```

Interface ID

47382d60-ddd8-11db-bf3a-0002a5d5c51b

Defaults

Reverb preset: SL_REVERBPRESET_NONE.
Methods

SetPreset

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables a preset on the global reverb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>- SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>- SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>The reverb <code>SL_REVERBPRESET_NONE</code> disables any reverb from the current output but does not free the resources associated with the reverb. For an application to signal to the implementation to free the resources, it must either change the object’s state to Unrealized or dynamically remove the <code>SLReverbPresetItf</code> interface using <code>SLDynamicInterfaceManagementItf::RemoveInterface</code> [see section 8.14]. Some implementations may support an extended set of reverb presets, in which case a wider range of reverb presets are accepted in this method.</td>
</tr>
</tbody>
</table>

```c
SLresult (*SetPreset) (  
    SLPresetReverbItf self,  
    SLuint16 preset  
);
```
GetPreset

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the current global reverb preset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pPreset</td>
<td>[out] Pointer to location for the current reverb preset. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
8.36 SLRatePitchItf

Description

SLRatePitchItf is an interface for controlling the rate at which a sound is played back. A change in rate will cause a change in pitch. The rate is specified using a permille factor that controls the playback rate:

- A value of 1000 ‰ indicates normal playback rate; there is no change in pitch.
- A value of 500 ‰ indicates playback at half the normal rate, causing a pitch shift of –12 semitones (one octave decrease).
- A value of 2000 ‰ indicates playback at double the normal rate, causing a pitch shift of 12 semitones (one octave increase).

This interface is supported on the Audio Player [see section 7.2] object.

Prototype

```c
extern const SLInterfaceID SL_IID_RATEPITCH;

struct SLRatePitchItf_;  
typedef const struct SLRatePitchItf_ * const * SLRatePitchItf;

struct SLRatePitchItf_ {  
    SLresult (*SetRate) (  
        SLRatePitchItf self,  
        SLpermille rate  
    );  
    SLresult (*GetRate) (  
        SLRatePitchItf self,  
        SLpermille *pRate  
    );  
    SLresult (*GetRatePitchCapabilities) (  
        SLRatePitchItf self,  
        SLpermille *pMinRate,  
        SLpermille *pMaxRate  
    );
};
```

Interface ID

61b62e60-ddda-11db-9eb8-0002a5d5c51b

Defaults
Rate: 1000 ‰

Methods

SetRate

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets a player’s rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td>self [in] Interface self-reference.</td>
</tr>
<tr>
<td>rate [in] Rate factor in permille. The range supported by this parameter is both implementation- and content-dependent and can be determined using the GetRatePitchCapabilities() method.</td>
<td></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Changing a player’s rate will change the pitch at which a sound is played. For example, when the rate is set at 2000 ‰, the sound will be played at twice the normal playback rate, causing a one octave increase in pitch.</td>
</tr>
<tr>
<td></td>
<td>As the Doppler effect may be implemented internally as a rate change and the rate change may be capped, in some situations, such as when the rate change exceeds the device capabilities, this method may appear to have no audible effect, even though the method succeeded. In this case, the effect will be audible when the amount of Doppler is reduced.</td>
</tr>
<tr>
<td>See also</td>
<td>SL3DDopplerItf [see section 8.2].</td>
</tr>
</tbody>
</table>
GetRate

```c
SLresult (*GetRate) (  
    SLRatePitchItf self,  
    SLpermille *pRate,  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the player’s current rate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pRate</td>
<td>[out] Pointer to location for the player’s rate in permille. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>SL3DDopplerItf [see section 8.2].</td>
</tr>
</tbody>
</table>
GetRatePitchCapabilities

SLresult (*GetRatePitchCapabilities) (
 SLRatePitchItf self,
 SLpermille *pMinRate,
 SLpermille *pMaxRate
);

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the player’s rate pitch capabilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMinRate</td>
<td>[out] Pointer to a location for minimum rate supported for the player. If NULL, the minimum rate is not reported.</td>
</tr>
<tr>
<td>pMaxRate</td>
<td>[out] Pointer to a location for the maximum rate supported for the player. If NULL, the maximum rate is not reported.</td>
</tr>
</tbody>
</table>
| Return value | The return value can be one of the following:
 SL_RESULT_SUCCESS |
| Comments | The values returned by this method are the absolute minimum and maximum values supported by the implementation for the player when no other Doppler or rate changes are applied. |
| See also | None |
8.37 SLRecordItf

Description

SLRecordItf is an interface for controlling the recording state of an object. The record state machine is as follows:

![Record state machine diagram]

Table 12: Data Status and Recording State

<table>
<thead>
<tr>
<th>Recording State</th>
<th>Destination(^1) closed</th>
<th>Head(^2) moving (sending data to destination)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopped</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Paused(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recording</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

\(^1\) “Destination” denotes the sink of the recording process (for example, a file being written to).

\(^2\) “Head” denotes the position of the recording process relative in time to the duration of the entire recording (for example, if the five seconds of audio have been sent to the destination, the head is at five seconds).

\(^3\) If a recorder transitions from Paused to Recording (without an intervening transition to Stopped), the newly captured data is appended to data already sent to the destination.

This interface is supported on the Audio Recorder [see section 7.2] object.

See section B.1.2 for an example using this interface.
Prototype

extern const SLInterfaceID SL_IID_RECORD;

struct SLRecordItf_;
typedef const struct SLRecordItf_ * const * SLRecordItf;

struct SLRecordItf_ {
 SLresult (*SetRecordState) (
 SLRecordItf self,
 SLuint32 state
);
 SLresult (*GetRecordState) (
 SLRecordItf self,
 SLuint32 *pState
);
 SLresult (*SetDurationLimit) (
 SLRecordItf self,
 SLmillisecond msec
);
 SLresult (*GetPosition) (
 SLRecordItf self,
 SLmillisecond *pMsec
);
 SLresult (*RegisterCallback) (
 SLRecordItf self,
 slRecordCallback callback,
 void *pContext
);
 SLresult (*SetCallbackEventsMask) (
 SLRecordItf self,
 SLuint32 eventFlags
);
 SLresult (*GetCallbackEventsMask) (
 SLRecordItf self,
 SLuint32 *pEventFlags
);
 SLresult (*SetMarkerPosition) (
 SLRecordItf self,
 SLmillisecond mSec
);
 SLresult (*ClearMarkerPosition) (
 SLRecordItf self
);
 SLresult (*GetMarkerPosition) (
 SLRecordItf self,
 SLmillisecond *pMsec
);
 SLresult (*SetPositionUpdatePeriod) (
 SLRecordItf self,
 SLmillisecond mSec
);
};
SLresult (*GetPositionUpdatePeriod) (
 SLRecordItf self,
 SLmillisecond *pMsec
);

Interface ID
c5657aa0-dddb-11db-82f7-0002a5d5c51b

Defaults
A recorder defaults to the **SL_RECORDSTATE_STOPPED** state, with no marker, no duration limit, an update period of one second, and there are no markers set nor callbacks registered and the callback event flags are cleared.

Callbacks

<table>
<thead>
<tr>
<th>slRecordCallback</th>
</tr>
</thead>
</table>
| typedef void (SLAPIENTRY *slRecordCallback) (
 SLRecordItf caller,
 void *pContext,
 SLuint32 event
); |

| **Description** | Notifies the recorder application of a recording event. |
| **Parameters** | **caller** [in] Interface instantiation on which the callback was registered.
| | **pContext** [in] User context data that is supplied when the callback method is registered.
	event [in] Event that has occurred (see **SL_RECORDEREVENT** macros in section 9.2.39).
Comments	None
See Also	RegisterCallback()
Methods

SetRecordState

```c
SLresult (*SetRecordState)(
    SLRecordItf self,
    SLuint32 state
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Transitions recorder into the given record state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None. The recorder may be in any state.</td>
</tr>
<tr>
<td>state</td>
<td>[in] Desired recorder state. Must be one of SL_RECORDSTATE macros [see section 9.2.40].</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>All state transitions are legal.</td>
</tr>
</tbody>
</table>

GetRecordState

```c
SLresult (*GetRecordState)(
    SLRecordItf self,
    SLuint32 *pState
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the recorder’s current record state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>pState</td>
<td>[out] Pointer to a location to receive the current record state of the recorder. See SL_RECORDSTATE macros in section 9.2.40. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetDurationLimit

```c
SLresult (*SetDurationLimit) (  
    SLRecordItf self,  
    SLmillisecond msec  
);
```

Description
Sets the duration of current content in milliseconds.

Pre-conditions
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Interface self-reference.</td>
<td>[in]</td>
<td></td>
</tr>
<tr>
<td>msec</td>
<td>Non-zero limit on the duration of total recorded</td>
<td>[in]</td>
<td>A value of SL_TIME_UNKNOWN indicates no limit.</td>
</tr>
<tr>
<td></td>
<td>content in milliseconds.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
When the recorder reaches the limit, it automatically transitions to the SL_RECORDSTATE_STOPPED state and notifies the application via the SL_RECORDEVENT_HEADATLIMIT event [see section 9.2.39].

GetPosition

```c
SLresult (*GetPosition) (  
    SLRecordItf self,  
    SLmillisecond *pMsec  
);
```

Description
Returns the current position of the recording head relative to the beginning of content.

Pre-conditions
None

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Interface self-reference.</td>
<td>[in]</td>
<td></td>
</tr>
<tr>
<td>pMsec</td>
<td>Pointer to a location to receive the position of the recording head relative to the beginning of the content, expressed in milliseconds. This must be non-NULL.</td>
<td>[out]</td>
<td></td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
The position is synonymous with the amount of recorded content.
RegisterCallback

```c
SLresult (*RegisterCallback) (  
    SLRecordItf self,  
    slRecordCallback callback,  
    void *pContext  
) ;
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Registers the record callback function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>callback</td>
<td>[in] Callback function invoked when one of the specified events occurs. A <code>NULL</code> value indicates that there is no callback.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is to be returned as part of the callback method.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return value</th>
<th>The return value can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
</tbody>
</table>

| Comments | None |

| See Also | `SL_RECORDEVENT [see section 9.2.39].` |
SetCallbackEventsMask

```
SLresult (*SetCallbackEventsMask) (  
    SLRecordItf self,  
    SLuint32 eventFlags  
);  
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the notification state of record events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>eventFlags</td>
<td>[in] Combination record event flags (see SL_RECORDEVENT macros in section 9.2.39) indicating which callback events are enabled.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The callback event flags default to all flags cleared.</td>
</tr>
</tbody>
</table>

GetCallbackEventsMask

```
SLresult (*GetCallbackEventsMask) (  
    SLRecordItf self,  
    SLuint32 *pEventFlags  
);  
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the notification state of record events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pEventFlags</td>
<td>[out] Pointer to a location to receive the combination of record event flags (see SL_RECORDEVENT macros in section 9.2.39) indicating which callback events are enabled. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetMarkerPosition

```c
SLresult (*SetMarkerPosition) (  
    SLRecordItf self,  
    SLmillisecond mSec
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the position of the recording marker.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>mSec</code></td>
<td>[in] Position of the marker expressed in milliseconds and relative to the beginning of the content. Must be between 0 and the specified duration limit.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The player will notify the application when the recording head passes through the marker via a callback with a SL_RECORDEVENT_HEADATMARKER event [see section 9.2.39].</td>
</tr>
</tbody>
</table>

ClearMarkerPosition

```c
SLresult (*ClearMarkerPosition) (  
    SLRecordItf self
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Clears marker.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>This function succeeds even if the marker is already clear.</td>
</tr>
<tr>
<td>See Also</td>
<td>SetMarkerPosition()</td>
</tr>
</tbody>
</table>
GetMarkerPosition

Description
Queries the position of the recording marker.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMSec</td>
<td>[out]</td>
<td>Pointer to a location to receive the position of the marker expressed in milliseconds and relative to the beginning of the content. Must be between 0 and the specified duration limit. This must be non-NULL.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
None

SetPositionUpdatePeriod

Description
Sets the interval between periodic position notifications.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mSec</td>
<td>[in]</td>
<td>Non-zero period between position notifications in milliseconds.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
The recorder will notify the application when the recording head passes through the positions implied by the specified period. Those positions are defined as the whole multiples of the period relative to the beginning of the content.
GetPositionUpdatePeriod

```c
SLresult (*GetPositionUpdatePeriod) (  
    SLRecordItf self,  
    SLmillisecond *pMSec  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Queries the interval between periodic position notifications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMSec</td>
<td>[out] Pointer to a location to receive the period between position notifications in milliseconds. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
8.38 SLSeekItf

Description

SeekItf is an interface for manipulating a playback head, including setting its position and looping characteristics. When supported, seeking may be used, regardless of playback state or rate.

This interface is supported on the Audio Player [see section 7.2] and MIDI Player [see section 7.8] objects.

See sections B.5.2, B.6.1, and Appendix C: for examples using this interface.

Prototype

extern const SLInterfaceID SL_IID_SEEK;

struct SLSeekItf_;
typedef const struct SLSeekItf_ * const * SLSeekItf;

struct SLSeekItf_ {
 SLresult (*SetPosition)(
 SLSeekItf self,
 SLmillisecond pos,
 SLuint32 seekMode
);
 SLresult (*SetLoop)(
 SLSeekItf self,
 SLboolean loopEnable,
 SLmillisecond startPos,
 SLmillisecond endPos
);
 SLresult (*GetLoop)(
 SLSeekItf self,
 SLboolean *pLoopEnabled,
 SLmillisecond *pStartPos,
 SLmillisecond *pEndPos
);
};

Interface ID

d43135a0-dddc-11db-b458-0002a5d5c51b
Defaults

The playback position defaults to 0 milliseconds (the beginning of the current content). Global and local looping are disabled by default.

Methods

SetPosition

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the position of the playback head.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pos</td>
<td>[in] Desired playback position in milliseconds, relative to the beginning of content.</td>
</tr>
<tr>
<td>seekMode</td>
<td>[in] Inherent seek mode. See the seek mode definition for details [see section 9.2.45]. If the seek mode is not supported, this method will return SL_RESULT_FEATURE_UNSUPPORTED.</td>
</tr>
<tr>
<td>Return value</td>
<td></td>
</tr>
<tr>
<td>The return value can be one of the following:</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td></td>
</tr>
<tr>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>The implementation may set the position to the nearest discrete sample or frame. Note that the position is defined relative to the content playing at 1x forward rate; positions do not scale with changes in playback rate.</td>
<td></td>
</tr>
</tbody>
</table>
SetLoop

```c
SLresult (*SetLoop) (  
  SLSeekItf self,  
  SLboolean loopEnable,  
  SLmillisecond startPos,  
  SLmillisecond endPos  
);
```

Description

Enables or disables looping and sets the start and end points of looping. When looping is enabled and the playback head reaches the end position, the player automatically sets the head to the start position and remains in the `SL_PLAYSTATE_PLAYING` state. Setting a loop does not otherwise have any effect on the playback head even if the head is outside the loop at the time the loop is set.

Pre-conditions

Specified end position is greater than specified start position.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loopEnable</td>
<td>[in]</td>
<td>Specifies whether looping is enabled (true) or disabled (false).</td>
</tr>
<tr>
<td>startPos</td>
<td>[in]</td>
<td>Position in milliseconds relative to the beginning of content specifying the start of the loop.</td>
</tr>
<tr>
<td>endPos</td>
<td>[in]</td>
<td>Position in milliseconds relative to the beginning of content specifying the end of the loop. endPos must be greater than startPos. A value of <code>SL_TIME_UNKNOWN</code> denotes the end of the stream.</td>
</tr>
</tbody>
</table>

Return value

The return value can be one of the following:

- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`
- `SL_RESULT_FEATURE_UNSUPPORTED`

Comments

If local looping is not supported, this method returns `SL_RESULT_FEATURE_UNSUPPORTED`.

PROFILE NOTE

In the Phone profile, audio players are mandated only to support `SetLoop` where `startPos = 0, endPos = SL_TIME_UNKNOWN`.

For all the others profiles and objects `SetLoop` is mandated as defined in the object’s profile notes.
GetLoop

```c
SLresult (*GetLoop) (  
    SLSeekItf self,  
    SLboolean *pLoopEnabled,  
    SLmillisecond *pStartPos,  
    SLmillisecond *pEndPos  
);
```

Description
Queries whether looping is enabled or disabled, and retrieves loop points.

Pre-conditions
None.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLoopEnabled</td>
<td>[out]</td>
<td>Pointer to a location to receive the flag indicating whether looping is enabled (true) or disabled (false). This must be non-NULL.</td>
<td></td>
</tr>
<tr>
<td>pStartPos</td>
<td>[out]</td>
<td>Pointer to a location to receive the position in milliseconds relative to the beginning of content specifying the start of the loop. This must be non-NULL.</td>
<td></td>
</tr>
<tr>
<td>pEndPos</td>
<td>[out]</td>
<td>Pointer to a location to receive the position in milliseconds relative to the beginning of content specifying the end the loop. A value of <code>SL_TIME_UNKNOWN</code> denotes the end of the stream. This must be non-NULL.</td>
<td></td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- `SL_RESULT_SUCCESS`
- `SL_RESULT_PARAMETER_INVALID`

Comments
None
8.39 SLThreadSyncItf

Description

Registered callbacks can be invoked concurrently to application threads and even concurrently to other callbacks. The application cannot assume anything about the context from which registered callbacks are invoked, and thus using the native synchronization mechanisms for synchronization of callback contexts is not guaranteed to work.

For this purpose, a critical section mechanism is introduced. There is one critical section per engine object. Applications that require more flexibility can implement such a mechanism on top of this critical section mechanism.

The semantics of the critical section mechanism are specified as follows:

- The engine is said to be **in a critical section state** during the time between when a call to `EnterCriticalSection()` has returned successfully and until the time when a call to `ExitCriticalSection()` is made.
- When the engine is in a critical section state, any call to `EnterCriticalSection()` will block until the engine exited the critical section state, or until an error has occurred (the return code of the `EnterCriticalSection()` call will reflect which of the conditions has occurred).

One important point is worth mentioning: when the engine is operating in non-thread-safe mode, the `EnterCriticalSection()` and `ExitCriticalSection()` methods are **not thread safe**, in the sense that their behavior is undefined, should the application call them from within multiple application contexts concurrently. These methods will, however, work properly when invoked from a single application context in concurrency with one or more callback contexts.

This interface is supported on the engine [see section 7.4] object.

Prototype

```c
extern const SLInterfaceID SL_IID_THREADSYNC;

struct SLThreadSyncItf_; 
typedef const struct SLThreadSyncItf_ * const * SLThreadSyncItf;

struct SLThreadSyncItf_ {
    SLresult (*EnterCriticalSection) (SLThreadSyncItf self);
};
```
Interface ID

f6ac6b40-dddc-11db-a62e-0002a5d5c51b

Defaults

Not in critical section state.

Methods

<table>
<thead>
<tr>
<th>EnterCriticalSection</th>
</tr>
</thead>
</table>
| `SLresult (*EnterCriticalSection) (
 SLThreadSyncItf self
);` |

<table>
<thead>
<tr>
<th>Description</th>
<th>Blocks until the engine is not in critical section state, then transitions the engine into critical section state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The calling context must not already be in critical section state.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PRECONDITIONS_VIOLATED</code></td>
</tr>
<tr>
<td>Comments</td>
<td>Use this method to achieve synchronization between application context and callback context(s), or between multiple callback contexts. See comments in the description section regarding thread-safety of this method.</td>
</tr>
<tr>
<td>See also</td>
<td><code>ExitCriticalSection()</code></td>
</tr>
<tr>
<td>ExitCriticalSection</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>SLresult (*ExitCriticalSection) (</td>
<td></td>
</tr>
<tr>
<td>SLThreadSyncItf self</td>
<td></td>
</tr>
<tr>
<td>) ;</td>
<td></td>
</tr>
</tbody>
</table>

Description
Transitions the engine from critical section state to non-critical section state.

Pre-conditions
The engine must be in critical section state. The call must be made from the same context that entered the critical section.

Parameters

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PRECONDITIONS_VIOLATED

Comments
Use this method to achieve synchronization between client application context and callback context(s), or between multiple callback contexts. See comment in description section regarding thread-safety of this method.

See also
EnterCriticalSection()
8.40 SLVibraItf

Description

SLVibraItf interface is used to activate and deactivate the Vibra I/O device object, as well as to set its frequency and intensity, if supported.

SLVibraItf uses the following state model, which indicates whether the vibration device is vibrating or not:

![State Model Diagram]

Figure 39: Vibra I/O device state model

This interface is supported on the Vibra I/O device object [see section 7.10].
Prototype

extern const SLInterfaceID SL_IID_VIBRA;

struct SLVibraItf;
typedef const struct SLVibraItf_ * const * SLVibraItf;

struct SLVibraItf_ {
 SLresult (*Vibrate) (
 SLVibraItf self,
 SLboolean vibrate
);
 SLresult (*IsVibrating) (
 SLVibraItf self,
 SLboolean *pVibrating
);
 SLresult (*SetFrequency) (
 SLVibraItf self,
 SLmilliHertz frequency
);
 SLresult (*GetFrequency) (
 SLVibraItf self,
 SLmilliHertz *pFrequency
);
 SLresult (*SetIntensity) (
 SLVibraItf self,
 SLpermille intensity
);
 SLresult (*GetIntensity) (
 SLVibraItf self,
 SLpermille *pIntensity
);
};

Interface ID

169a8d60-dddd-11db-923d-0002a5d5c51b

Defaults

Initially, the object is in the off state. Default frequency and intensity are undefined.
Methods

Vibrate

Signature:

```c
SLresult (*Vibrate) (SLVibraItf self, SLboolean vibrate);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Activates or deactivates vibration for the I/O device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>vibrate</td>
<td>[in] Boolean indicating whether to vibrate.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_IO_ERROR SL_RESULT_CONTROL_LOST</td>
</tr>
</tbody>
</table>

IsVibrating

Signature:

```c
SLresult (*IsVibrating) (SLVibraItf self, SLboolean *pVibrating);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns whether the I/O device is vibrating.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pVibrating</td>
<td>[out] Address to store a boolean indicating whether the I/O device is vibrating.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS SL_RESULT_PARAMETER_INVALID</td>
</tr>
</tbody>
</table>

Comments

None.

See also

None.
SetFrequency

```
SLresult (*SetFrequency) (  
    SLVibraItf self,  
    SLmilliHertz frequency  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the vibration frequency of the I/O device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>The Vibra I/O device must support setting intensity, per SLVibraDescriptor::supportsFrequency.</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>frequency</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_RESOURCE_LOST</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None.</td>
</tr>
<tr>
<td>See also</td>
<td>SLVibraDescriptor [see section 9.1.23].</td>
</tr>
</tbody>
</table>
GetFrequency

```c
SLresult (*GetFrequency) (  
    SLVibraItf self,  
    SLmilliHertz *pFrequency  
);  
```

Description
Returns the vibration frequency of the I/O device.

Pre-conditions
The Vibra I/O device must support setting intensity, per SLVibraDescriptor::supportsFrequency.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFrequency</td>
<td>[out] Address to store the vibration frequency. Range is [SLVibraDescriptor::minFrequency, SLVibraDescriptor::maxFrequency]</td>
<td></td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PRECONDITIONS_VIOLATED
- SL_RESULT_PARAMETER_INVALID

Comments
None.

See also
SLVibraDescriptor [see section 9.1.23].

SetIntensity

```c
SLresult (*SetIntensity) (  
    SLVibraItf self,  
    SLpermille intensity  
);  
```

Description
Sets the vibration intensity of the Vibra I/O device.

Pre-conditions
The Vibra I/O device must support setting intensity, per SLVibraDescriptor::supportsIntensity.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intensity</td>
<td>[in] Intensity of vibration. Range is [0, 1000].</td>
<td></td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:
- SL_RESULT_SUCCESS
- SL_RESULT_PRECONDITIONS_VIOLATED
- SL_RESULT_PARAMETER_INVALID
- SL_RESULT_CONTROL_LOST

Comments
None.

See also
SLVibraDescriptor [see section 9.1.23].
| SLresult (*GetIntensity)(
| const SLVibraItf self,
| SLpermille *pIntensity
|)
| Description | Returns the vibration intensity of the Vibra I/O device. |
| Pre-conditions | The Vibra I/O device must support setting intensity, per SLVibraDescriptor::supportsIntensity. |
| Parameters |
| pIntensity | [out] | Address to store the vibration intensity of the Vibra I/O device. Range is [0, 1000]. |
| Return value | The return value can be one of the following:
| SL_RESULT_SUCCESS
| SL_RESULT_PRECONDITIONS_VIOLATED
| SL_RESULT_PARAMETER_INVALID
| Comments | None. |
| See also | SLVibraDescriptor [see section 9.1.23]. |
8.41 SLVirtualizerItf

Description

This interface is for controlling audio virtualizer functionality. Audio virtualizer is a general name for an effect to spatialize audio channels. The exact behavior of this effect is dependent on the number of audio input channels and the types and number of audio output channels of the device. For example, in the case of a stereo input and stereo headphone output, a stereo widening effect is used when this effect is turned on. An input with 5.1-channels uses similarly a virtual surround algorithm. The exact behavior in each case is listed in the table below:

Table 13: Audio Virtualizer Functionality

<table>
<thead>
<tr>
<th></th>
<th>Mono Input</th>
<th>Stereo Input</th>
<th>Multi-channel Input (more than two channels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono loudspeaker</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Stereo loudspeakers</td>
<td>Pseudo-stereo</td>
<td>Stereo widening</td>
<td>Channel virtualization</td>
</tr>
<tr>
<td>Mono headset</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Stereo headset</td>
<td>Pseudo-stereo</td>
<td>Stereo widening</td>
<td>Channel virtualization</td>
</tr>
</tbody>
</table>

(Also other terms, including “Stereo virtualization,” are used for this kind of algorithm.)

As the table shows, the effect is not audible if mono output is used.

This interface affects different parts of the audio processing chain depending on which object the interface is exposed. If this interface is exposed on an Output Mix object, the effect is applied to the output mix. If this interface is exposed on a Player object, it is applied to the Player’s output only. For more information, see section 4.5.1.

When this interface is exposed on an Output Mix object, the effect will not affect the output of any of the 3D sources.

This interface is supported on the Output Mix [see section 7.9] object.
Prototype

extern const SLInterfaceID SL_IIDVIRTUALIZER;

struct SLVirtualizerItf;
typedef const struct SLVirtualizerItf * const * SLVirtualizerItf;

struct SLVirtualizerItf {
 SLresult (*SetEnabled)(
 SLVirtualizerItf self,
 SLboolean enabled
);
 SLresult (*IsEnabled)(
 SLVirtualizerItf self,
 SLboolean *pEnabled
);
 SLresult (*SetStrength)(
 SLVirtualizerItf self,
 SLpermille strength
);
 SLresult (*GetRoundedStrength)(
 SLVirtualizerItf self,
 SLpermille *pStrength
);
 SLresult (*IsStrengthSupported)(
 SLVirtualizerItf self,
 SLboolean *pSupported
);
};

Interface ID

37cc2c00-dddd-11db-8577-0002a5d5c51b
Methods

SetEnabled

```c
SLresult (*SetEnabled)(
    SLVirtualizerItf self,
    SLboolean enabled
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>enabled [in] True to turn on the effect, false to switch it off.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

IsEnabled

```c
SLresult (*IsEnabled)(
    SLVirtualizerItf self,
    SLboolean *pEnabled
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the enabled status of the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pEnabled [out] True if the effect is on, false otherwise.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
SetStrength

```c
SLresult (*SetStrength)(
    SLVirtualizerItf self,
    SLpermille strength
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the strength of the effect. If the implementation does not support per mille accuracy for setting the strength, it is allowed to round the given strength to the nearest supported value. You can use the GetRoundedStrength() method to query the (possibly rounded) value that was actually set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>strength</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_CONTROL_LOST</td>
</tr>
<tr>
<td>Comments</td>
<td>Please note that the strength does not affect the output if the effect is not enabled. This set method will in all cases store the setting, even if the effect is not enabled currently.</td>
</tr>
<tr>
<td></td>
<td>Please note also that the strength can also change if the output device is changed (as, for example, from stereo loudspeakers to stereo headphones) and those output devices use different algorithms with different accuracies. You can use device changed callbacks (slAvailableAudioOutputsChangedCallback() in the SLAudioIODeviceCapabilitiesItf interface) to monitor device changes and query the possibly-changed strength using GetRoundedStrength() if you want to, in order, for example, for a graphical user interface to follow the current strength accurately.</td>
</tr>
<tr>
<td>See Also</td>
<td>SLAudioIODeviceCapabilitiesItf [see section 8.10].</td>
</tr>
</tbody>
</table>
GetRoundedStrength

`SLresult (*GetRoundedStrength)(
 SLVirtualizerItf self,
 SLpermille *pStrength
);`

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the current strength of the effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pStrength</td>
<td>[out] Strength of the effect. The valid range for strength is [0, 1000], where 0 per mille designates the mildest effect and 1000 per mille designates the strongest effect,</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>Please note that the strength does not affect the output if the effect is not enabled.</td>
</tr>
<tr>
<td></td>
<td>Please note also that in some cases the exact mapping of the strength to the underlying algorithms might not maintain the full accuracy exposed by the API. This is due to the fact that, for example, a global VirtualizerItf might actually control internally multiple algorithms that might use different accuracies: one for mono inputs and another for stereo inputs.</td>
</tr>
<tr>
<td>IsStrengthSupported</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>*SLresult (IsStrengthSupported)(</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLVirtualizerIf self,</td>
</tr>
<tr>
<td></td>
<td>SLboolean *pSupported</td>
</tr>
<tr>
<td>);</td>
<td></td>
</tr>
</tbody>
</table>

Description
Tells whether setting strength is supported. If this method returns false, only one strength is supported and SetStrength() method always rounds to that value.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSupported</td>
<td>[out]</td>
<td>True if setting of the strength is supported, false if only one strength is supported.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
None
8.42 SLVisualizationItf

Description

This interface is for getting data for visualization purposes. The mechanism provides two kinds of data to the application:

- **Waveform data**: 512 consecutive 8-bit mono samples
- **Frequency data**: 256-length 8-bit magnitude FFT

This interface can be exposed on either an engine object or a media object. If it is exposed on the engine object, it provides global data from the main mix; if it is exposed on a media object, it provides object-specific data.

The media object-specific visualization data is not affected by any of the API volume controls. Global visualization data is affected by all media object-specific OpenSL ES-controlled processing, such as volume and effects, but it is implementation-dependent whether global processing affects global visualization data.

Prototype

```c
extern const SLInterfaceID SL_IID_VISUALIZATION;

struct SLVisualizationItf_;  /* SLInterfaceData */
typedef const struct SLVisualizationItf_ * const * SLVisualizationItf;

struct SLVisualizationItf_
{
    SLresult (*RegisterVisualizationCallback)(
        SLVisualizationItf self,
        SLVisualizationCallback callback,
        void *pContext,
        SLmilliHertz rate
    );
    SLresult (*GetMaxRate)(
        SLVisualizationItf self,
        SLmilliHertz* pRate
    );
};
```

Interface ID

e46b26a0-dddd-11db-8afd-0002a5d5c51b
Callbacks

`slVisualizationCallback`

```c
typedef void (SLAPIENTRY *slVisualizationCallback) (  
    SLVisualizationItf caller,  
    void *pContext,  
    const SLuint8 waveform[],  
    const SLuint8 fft[],  
    SLmilliHertz samplerate
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gives visualization data to the application.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>caller</td>
<td>[in] Interface instantiation on which the callback was registered.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td>waveform</td>
<td>[in] Waveform data, 512 consecutive 8-bit mono samples. The value range is [0, 255] and the value 128 represents a zero signal. The application must utilize the data before the callback returns; there is no guarantee that the pointer is valid after this function returns.</td>
</tr>
<tr>
<td>fft</td>
<td>[in] Frequency data, 256-length 8-bit magnitude FFT for visualization. The value range is [0, 255]. The same full-scale sine signal in both channels of a stereo signal produces a full-scale output at one of the FFT-bins, provided that the signal frequency matches bin-frequency exactly. The application must utilize the data before the callback returns; there is no guarantee that the pointer is valid after this function returns.</td>
</tr>
<tr>
<td>samplerate</td>
<td>[in] Sampling rate of the waveform and FFT data.</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td><code>SLVisualization::RegisterVisualizationCallback</code></td>
</tr>
</tbody>
</table>
Methods

RegisterVisualizationCallback

```c
SLresult (*RegisterVisualizationCallback)(
    SLVisualizationItf self,
    slVisualizationCallback callback,
    void *pContext,
    SLmilliHertz rate
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or clears the <code>slVisualizationCallback</code>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>callback</td>
<td>[in] Address of the callback.</td>
</tr>
<tr>
<td>pContext</td>
<td>[in] User context data that is supplied when the callback method is registered.</td>
</tr>
<tr>
<td>rate</td>
<td>[in] Rate how often the callback is called (in milliHertz). This parameter must always be greater than zero. Use <code>GetMaxRate()</code> method to query the maximum supported rate.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_MEMORY_FAILURE</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>
GetMaxRate

```c
SLresult (*GetMaxRate)(
    SLVisualizationItf self,
    SLmilliHertz* pRate
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the maximum supported rate. A valid implementation must return at least 20000 mHz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>pRate</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
</tbody>
</table>

8.43 SLVolumeItf

Description

This interface exposes controls for manipulating the object’s audio volume properties. This interface additionally exposes a stereo position control. Its exact effect is determined by the object’s format; if the object’s format is mono, a pan effect is applied, and if the object’s format is stereo, a balance effect is applied.

This interface is supported on the Audio Player [see section 7.2], MIDI Player [see section 7.8] and Output Mix [see section 7.9] objects.

See Appendix C: for examples using this interface.

Prototype

```c
extern const SLInterfaceID SL_IID_VOLUME;

struct SLVolumeItf_;
typedef const struct SLVolumeItf_ * const * SLVolumeItf;

struct SLVolumeItf_ {
  SLresult (*SetVolumeLevel) (SLVolumeItf self, SLmillibel level);
  SLresult (*GetVolumeLevel) (SLVolumeItf self, SLmillibel *pLevel);
  SLresult (*GetMaxVolumeLevel) (SLVolumeItf self, SLmillibel *pMaxLevel);
  SLresult (*SetMute) (SLVolumeItf self, SLboolean mute);
  SLresult (*GetMute) (SLVolumeItf self, SLboolean *pMute);
  SLresult (*EnableStereoPosition) (SLVolumeItf self, SLboolean enable);
  SLresult (*IsEnabledStereoPosition) (SLVolumeItf self, SLboolean *pEnable);
};
```
Interface ID

09e8ede0-ddde-11db-b4f6-0002a5d5c51b

Defaults

- Volume level: 0 mB
- Mute: disabled (not muted)
- Stereo position: disabled, 0 ‰ (center)
Methods

SetVolumeLevel

| SLresult (*SetVolumeLevel) (|
| SLVolumeItf self, |
| SLmillibel level |
|); |

Description
Sets the object’s volume level.

Pre-conditions
None

Parameters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>[in]</td>
<td></td>
<td>Volume level in millibels. The valid range is [SL_MILLIBEL_MIN, maximum supported level], where maximum supported level can be queried with the method GetMaxVolumeLevel(). The maximum supported level is always at least 0 mB.</td>
</tr>
</tbody>
</table>

Return value
The return value can be one of the following:

- SL_RESULT_SUCCESS
- SL_RESULT_PARAMETER_INVALID

Comments
If the object is muted, calls to SetVolumeLevel() will still change the internal volume level, but this will have no audible effect until the object is unmuted.

See also
SetMute()
GetVolumeLevel

```c
SLresult (*GetVolumeLevel) ( 
    SLVolumeItf self, 
    SLmillibel *pLevel 
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the object’s volume level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pLevel</td>
<td>[out] Pointer to a location to receive the object’s volume level in millibels. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>

GetMaxVolumeLevel

```c
SLresult (*GetMaxVolumeLevel) ( 
    SLVolumeItf self, 
    SLmillibel *pMaxLevel 
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the maximum supported level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMaxLevel</td>
<td>[out] Pointer to a location to receive the maximum supported volume level in millibels. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>The maximum supported level is implementation-dependent, but will always be at least 0 mB.</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
SetMute

```c
SLresult (*SetMute) (  
    SLVolumeItf self,  
    SLboolean mute  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Mutes or unmutes the object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>mute</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td>Comments</td>
<td>Muting the object does not change the volume level reported by GetVolumeLevel().</td>
</tr>
<tr>
<td></td>
<td>Calling SetMute() with mute set to true when the object is already muted is a valid operation that has no effect.</td>
</tr>
<tr>
<td></td>
<td>Calling SetMute() with mute set to false when the object is already unmuted is a valid operation that has no effect.</td>
</tr>
<tr>
<td>See also</td>
<td>GetVolumeLevel()</td>
</tr>
</tbody>
</table>

GetMute

```c
SLresult (*GetMute) (  
    SLVolumeItf self,  
    SLboolean *pMute  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Retrieves the object’s mute state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>pMute</td>
<td>[out]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
EnableStereoPosition

```c
SLresult (*EnableStereoPosition) (SLVolumeItf self,
SLboolean enable);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Enables or disables the stereo positioning effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>[in]</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>If the output of the object is monophonic this setting doesn't have any effect.</td>
</tr>
<tr>
<td>PROFILE NOTES</td>
<td>This method is mandated only in the Game and Music profiles.</td>
</tr>
<tr>
<td>See also</td>
<td>None.</td>
</tr>
</tbody>
</table>
IsEnabledStereoPosition

```c
SLresult (*IsEnabledStereoPosition) (  
    const SLVolumeItf self,  
    SLboolean *pEnable  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the enabled state of the stereo positioning effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>pEnable</code></td>
<td>[out] Pointer to a location to receive the enabled state of the stereo positioning effect.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_SUCCESS</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_PARAMETER_INVALID</td>
</tr>
<tr>
<td></td>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>If the output of the object is monophonic this setting doesn't have any effect.</td>
</tr>
</tbody>
</table>

PROFILE NOTES

This method is mandated only in the Game and Music profiles.

| See also | None |
SetStereoPosition

```
SLresult (*SetStereoPosition) (
   SLVolumeItf self,
   SLpermille stereoPosition
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the stereo position of the object; For mono objects, this will control a constant energy pan effect, and for stereo objects, this will control a balance effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>stereoPosition [in] Stereo position in the range [-1000 ‰, 1000 ‰]. A stereo position of 0 ‰ indicates the object is in the center. That is, in the case of balance, no attenuation is applied to the left and right channels; and in the case of pan, 3 dB attenuation is applied to the left and right channels. A stereo position of -1000 ‰ pans the object fully to the left; the right channel is silent. A stereo position of 1000 ‰ pans the object fully to the right; the left channel is silent.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following: SL_RESULT_SUCCESS, SL_RESULT_PARAMETER_INVALID, SL_RESULT_FEATURE_UNSUPPORTED</td>
</tr>
<tr>
<td>Comments</td>
<td>The exact pan and balance curves used for this method are implementation-dependent, subject to satisfying the parameter description. For objects whose (input) format is mono, this method controls a constant energy pan effect. For objects whose (input) format is stereo, this method controls a balance effect. If the output of the object is monophonic this setting doesn't have any effect.</td>
</tr>
</tbody>
</table>

PROFILE NOTES

This method is mandated only in the Game and Music profiles.

| See also | None |

GetStereoPosition

```c
SLresult (*GetStereoPosition) (  
    const SLVolumeItf self,  
    SLpermille *pStereoPosition  
);
```

<table>
<thead>
<tr>
<th>Description</th>
<th>Gets the object’s stereo position setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-conditions</td>
<td>None</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td><code>pStereoPosition</code></td>
<td>[out] Pointer to a location to receive the current stereo position setting. This must be non-NULL.</td>
</tr>
<tr>
<td>Return value</td>
<td>The return value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_SUCCESS</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_PARAMETER_INVALID</code></td>
</tr>
<tr>
<td></td>
<td><code>SL_RESULT_FEATURE_UNSUPPORTED</code></td>
</tr>
<tr>
<td>Comments</td>
<td>None</td>
</tr>
<tr>
<td>See also</td>
<td>None</td>
</tr>
</tbody>
</table>
9 Macros and Typedefs

9.1 Structures

9.1.1 SLAudioCodecDescriptor

typedef struct SLAudioCodecDescriptor_ {
 SLuint32 maxChannels;
 SLuint32 minBitsPerSample;
 SLuint32 maxBitsPerSample;
 SLmilliHertz minSampleRate;
 SLmilliHertz maxSampleRate;
 SLboolean isFreqRangeContinuous;
 SLmilliHertz *pSampleRatesSupported;
 SLuint32 numSampleRatesSupported;
 SLuint32 minBitRate;
 SLuint32 maxBitRate;
 SLboolean isBitrateRangeContinuous;
 SLuint32 *pBitratesSupported;
 SLuint32 numBitratesSupported;
 SLuint32 profileSetting;
 SLuint32 modeSetting;
} SLAudioCodecDescriptor;

This structure is used for querying the capabilities of an audio codec.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxChannels</td>
<td>Maximum number of audio channels.</td>
</tr>
<tr>
<td>minBitsPerSample</td>
<td>Minimum bits per sample of PCM data.</td>
</tr>
<tr>
<td>maxBitsPerSample</td>
<td>Maximum bits per sample of PCM data.</td>
</tr>
<tr>
<td>minSampleRate</td>
<td>Minimum sampling rate supported.</td>
</tr>
<tr>
<td>maxSampleRate</td>
<td>Maximum sampling rate supported.</td>
</tr>
<tr>
<td>isFreqRangeContinuous</td>
<td>Returns SL_BOOLEAN_TRUE if the device supports a continuous range of sampling rates between minSampleRate and maxSampleRate; otherwise returns SL_BOOLEAN_FALSE.</td>
</tr>
<tr>
<td>pSampleRatesSupported</td>
<td>Indexed array containing the supported sampling rates. Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE. If pSampleRatesSupported is NULL, the number of supported sample rates is returned in numSampleRatesSupported.</td>
</tr>
<tr>
<td>numSampleRatesSupported</td>
<td>Size of the pSampleRatesSupported array. Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE.</td>
</tr>
<tr>
<td>minBitRate</td>
<td>Minimum bit-rate.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxBitRate</td>
<td>Maximum bit-rate.</td>
</tr>
<tr>
<td>isBitrateRangeContinuous</td>
<td>Returns <code>SL_BOOLEAN_TRUE</code> if the device supports a continuous range of bitrates between <code>minBitRate</code> and <code>maxBitRate</code>; otherwise returns <code>SL_BOOLEAN_FALSE</code>.</td>
</tr>
<tr>
<td>pBitratesSupported</td>
<td>Indexed array containing the supported bitrates. Ignored if <code>isBitrateRangeContinuous</code> is <code>SL_BOOLEAN_TRUE</code>. If <code>pBitratesSupported</code> is NULL, the number of supported bitrates is returned in <code>numBitratesSupported</code>.</td>
</tr>
<tr>
<td>numBitratesSupported</td>
<td>Size of the <code>pBitratesSupported</code> array. Ignored if <code>isBitrateRangeContinuous</code> is <code>SL_BOOLEAN_TRUE</code>.</td>
</tr>
<tr>
<td>profileSetting</td>
<td>Profile supported by encoder. See <code>SL_AUDIOPROFILE</code> defines [see section 9.2.2].</td>
</tr>
<tr>
<td>modeSetting</td>
<td>Level supported by encoder. See <code>SL_AUDIOMODE</code> defines [see section 9.2.2].</td>
</tr>
</tbody>
</table>
9.1.2 SLAudioEncoderSettings

```c
typedef struct SLAudioEncoderSettings_ {
    SLuint32 encoderId;
    SLuint32 channelsIn;
    SLuint32 channelsOut;
    SLmilliHertz sampleRate;
    SLuint32 bitRate;
    SLuint32 bitsPerSample;
    SLuint32 rateControl;
    SLuint32 profileSetting;
    SLuint32 levelSetting;
    SLuint32 channelMode;
    SLuint32 streamFormat;
    SLuint32 encodeOptions;
    SLuint32 blockAlignment;
} SLAudioEncoderSettings;
```

This structure is used to set the audio encoding parameters. Set a field's value to zero to specify use of the default setting for that encoding parameter.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encoderId</td>
<td>Identifies the supported audio encoder. Refer to SL_AUDIOO_CODEC defines in section 9.2.1.</td>
</tr>
<tr>
<td>channelsIn</td>
<td>Number of input audio channels.</td>
</tr>
<tr>
<td>channelsOut</td>
<td>Number of output channels in encoded data. In case of contradiction between this field and the channelMode field, the channelMode field overrides.</td>
</tr>
<tr>
<td>sampleRate</td>
<td>Audio sample rate of input audio data in millihertz</td>
</tr>
<tr>
<td>bitRate</td>
<td>Bitrate of encoded data.</td>
</tr>
<tr>
<td>bitsPerSample</td>
<td>Bits per sample of input data.</td>
</tr>
<tr>
<td>rateControl</td>
<td>Encoding rate control mode. See SL_RATECONTROLMODE defines in section 9.2.37.</td>
</tr>
<tr>
<td>profileSetting</td>
<td>Profile to use for encoding. See SL_AUDIOPROFILE defines in section 9.2.2.</td>
</tr>
<tr>
<td>levelSetting</td>
<td>Level to use for encoding. See SL_AUDIOMODE defines in section 9.2.2.</td>
</tr>
<tr>
<td>channelMode</td>
<td>Channel mode for encoder. See SL_AUDIOCHANMODE defines in section 9.2.2.</td>
</tr>
<tr>
<td>streamFormat</td>
<td>Format of encoded bit-stream. For example, AMR encoders use this to select between IF1, IF2, or RTPPAYLOAD bit-stream formats. Refer to SL_AUDIOSTREAMFORMAT_XXX defines in section 9.2.2.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
encodeOptions | Codec specific encoder options. For example, WMA encoders use it to specify codec version, framesize, frequency extensions, and other options. See the relevant encoder documentation for format. This is typically a bitfield specifying encode options. Use a value of zero to specify use of the default encoder settings for the encoder.
blockAlignment | Block alignment in bytes of an audio sample.

9.1.3 **SLAudioInputDescriptor**

typedef struct SLAudioInputDescriptor_ {
 SLchar *deviceName;
 SLint16 deviceConnection;
 SLint16 deviceScope;
 SLint16 deviceLocation;
 SLboolean isForTelephony;
 SLmilliHertz minSampleRate;
 SLmilliHertz maxSampleRate;
 SLboolean isFreqRangeContinuous;
 SLmilliHertz *samplingRatesSupported;
 SLint16 numOfSamplingRatesSupported;
 SLint16 maxChannels;
} SLAudioInputDescriptor;

This structure is used for returning the description of audio input device capabilities. The `deviceConnection`, `deviceScope` and `deviceLocation` fields collectively describe the type of audio input device in a standardized way, while still allowing new device types to be added (by vendor-specific extensions of the corresponding macros), if necessary. For example, on a mobile phone, the integrated microphone would have the following values for each of these three fields, respectively: `SL_DEVCONNECTION_INTEGRATED`, `SL_DEVSCOPE_USER` and `SL_DEVLOCATION_HANDSET`, while a Bluetooth headset microphone would have the following values: `SL_DEVCONNECTION_ATTACHED_WIRELESS`, `SL_DEVSCOPE_USER` and `SL_DEVLOCATION_HEADSET`.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviceName</td>
<td>Human-readable string representing the name of the device, such as “Bluetooth microphone” or “wired microphone.”</td>
</tr>
<tr>
<td>deviceConnection</td>
<td>One of the device connection types listed in the <code>SL_DEVCONNECTION</code> macros.</td>
</tr>
<tr>
<td>deviceScope</td>
<td>One of the device scope types listed in the <code>SL_DEVSCOPE</code> macros.</td>
</tr>
<tr>
<td>deviceLocation</td>
<td>One of the device location types listed in the <code>SL_DEVLOCATION</code> macros.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>isForTelephony</td>
<td>Returns SL_BOOLEAN_TRUE if the audio input device is deemed suitable for telephony uplink audio; otherwise returns SL_BOOLEAN_FALSE. For example: a line-in jack would not be considered suitable for telephony, as it is difficult to determine what can be connected to it.</td>
</tr>
<tr>
<td>minSampleRate</td>
<td>Minimum sampling rate supported.</td>
</tr>
<tr>
<td>maxSampleRate</td>
<td>Maximum sampling rate supported.</td>
</tr>
<tr>
<td>isFreqRangeContinuous</td>
<td>Returns SL_BOOLEAN_TRUE if the input device supports a continuous range of sampling rates between minSampleRate and maxSampleRate; otherwise returns SL_BOOLEAN_FALSE.</td>
</tr>
<tr>
<td>samplingRatesSupported</td>
<td>Indexed array containing the supported sampling rates, as defined in the SL_SAMPLING_RATE macros. Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE.</td>
</tr>
<tr>
<td>numOfSamplingRatesSupported</td>
<td>Size of the samplingRatesSupported array. Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE.</td>
</tr>
<tr>
<td>maxChannels</td>
<td>Maximum number of channels supported; for mono devices, value would be 1.</td>
</tr>
</tbody>
</table>
The table below shows examples of the first five fields of the `SLAudioInputDescriptor` struct for various audio input devices. For the sake of brevity and clarity, the full names of the `SL_DEV` macros have been abbreviated to include just the distinct portion of the names (such as `SL_DEVCONNECTION_INTEGRATED` appears as `INTEGRATED` and `SL_DEVSCOPE_PRIVATE` as `PRIVATE`).

Table 14: Examples of Audio Input Devices

<table>
<thead>
<tr>
<th>deviceName</th>
<th>device-Connection</th>
<th>device-Scope</th>
<th>device-Location</th>
<th>isForTelephony</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handset microphone</td>
<td>INTEGRATED</td>
<td>USER</td>
<td>HANDSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Bluetooth microphone</td>
<td>WIRELESS</td>
<td>USER</td>
<td>HEADSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Wired headset microphone</td>
<td>WIRED</td>
<td>USER</td>
<td>HEADSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Carkit microphone</td>
<td>WIRED</td>
<td>ENVIRO-NMENT</td>
<td>CARKIT</td>
<td>TRUE</td>
</tr>
<tr>
<td>Carkit handset microphone</td>
<td>WIRED</td>
<td>USER</td>
<td>CARKIT</td>
<td>TRUE</td>
</tr>
<tr>
<td>System line-in jack</td>
<td>INTEGRATED</td>
<td>UNKNOWN</td>
<td>HANDSET</td>
<td>FALSE</td>
</tr>
<tr>
<td>Networked Media Server</td>
<td>NETWORK</td>
<td>UNKNOWN</td>
<td>RESLTE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>
9.1.4 SLAudioOutputDescriptor

typedef struct SLAudioOutputDescriptor_ {
 SLchar *pDeviceName;
 SLint16 deviceConnection;
 SLint16 deviceScope;
 SLint16 deviceLocation;
 SLboolean isForTelephony;
 SLmilliHertz minSampleRate;
 SLmilliHertz maxSampleRate;
 SLboolean isFreqRangeContinuous;
 SLmilliHertz *samplingRatesSupported;
 SLint16 numOfSamplingRatesSupported;
 SLint16 maxChannels;
} SLAudioOutputDescriptor;

This structure is used for returning the description of audio output device capabilities. The deviceConnection, deviceScope and deviceLocation fields collectively describe the type of audio output device in a standardized way, while still allowing new device types to be added (by vendor-specific extensions of the corresponding macros), if necessary. For example, on a mobile phone, the earpiece would have the following values for each of these three fields, respectively: SL_DEVCONNECTION_INTEGRATED, SL_DEVSCOPE_USER and SL_DEVLOCATION_HANDSET, while a pair of speakers that are part of a music dock would have the following: SL_DEVCONNECTION_ATTACHED_WIRED, SL_DEVSCOPE_ENVIRONMENT and SL_DEVLOCATION_DOCK.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviceName</td>
<td>Human-readable string representing the name of the output device, such as “integrated loudspeaker” or “Bluetooth headset.”</td>
</tr>
<tr>
<td>deviceConnection</td>
<td>One of the device connection types listed in the SL_DEVCONNECTION macros.</td>
</tr>
<tr>
<td>deviceScope</td>
<td>One of the device scope types listed in the SL_DEVSCOPE macros.</td>
</tr>
<tr>
<td>deviceLocation</td>
<td>One of the device location types listed in the SL_DEVLOCATION macros.</td>
</tr>
<tr>
<td>isForTelephony</td>
<td>Returns SL_BOOLEAN_TRUE if the audio output device is deemed suitable for telephony downlink audio; otherwise returns SL_BOOLEAN_FALSE. For example, a line-out jack would not be a suitable for telephony downlink audio.</td>
</tr>
<tr>
<td>minSampleRate</td>
<td>Minimum sampling rate supported.</td>
</tr>
<tr>
<td>maxSampleRate</td>
<td>Maximum sampling rate supported.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isFreqRangeContinuous</td>
<td>Returns SL_BOOLEAN_TRUE if the output device supports a continuous range of sampling rates between minSampleRate and maxSampleRate; otherwise returns SL_BOOLEAN_FALSE.</td>
</tr>
<tr>
<td>samplingRatesSupported</td>
<td>Indexed array containing the supported sampling rates, as defined in the SL_SAMPLINGRATE macros. Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE.</td>
</tr>
<tr>
<td>numOfSamplingRatesSupported</td>
<td>Size of the samplingRatesSupported array. Ignored if isFreqRangeContinuous is SL_BOOLEAN_TRUE.</td>
</tr>
<tr>
<td>maxChannels</td>
<td>Maximum number of channels supported; for mono devices, value would be 1.</td>
</tr>
</tbody>
</table>

The table below shows examples of the first six fields of the SLAudioOutputDescriptor struct for various audio output devices. For the sake of brevity and clarity, the full names of the SL_DEV macros have been abbreviated to include just the distinct portion of the names (such as SL_DEVCONNECTION_INTEGRATED appears as INTEGRATED and SL_DEVSCOPE_USER as USER).

Table 15: Examples of Audio Output Devices

<table>
<thead>
<tr>
<th>deviceName</th>
<th>device-Connection</th>
<th>device-Scope</th>
<th>device-Location</th>
<th>isFor-Telephony</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earpiece</td>
<td>INTEGRATED</td>
<td>USER</td>
<td>HANDSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Loudspeaker</td>
<td>INTEGRATED</td>
<td>ENVIRONMENT</td>
<td>HANDSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Bluetooth headset speaker</td>
<td>WIRELESS</td>
<td>USER</td>
<td>HEADSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Wired headset speaker</td>
<td>WIRED</td>
<td>USER</td>
<td>HEADSET</td>
<td>TRUE</td>
</tr>
<tr>
<td>Carkit loudspeaker</td>
<td>WIRED</td>
<td>ENVIRONMENT</td>
<td>CARKIT</td>
<td>TRUE</td>
</tr>
<tr>
<td>Carkit handset speaker</td>
<td>WIRED</td>
<td>USER</td>
<td>CARKIT</td>
<td>TRUE</td>
</tr>
<tr>
<td>System line-out jack</td>
<td>INTEGRATED</td>
<td>UNKNOWN</td>
<td>HANDSET</td>
<td>FALSE</td>
</tr>
<tr>
<td>Dock loudspeaker</td>
<td>WIRED</td>
<td>ENVIRONMENT</td>
<td>DOCK</td>
<td>FALSE</td>
</tr>
</tbody>
</table>
9.1.5 SLBufferQueueState

typedef struct SLBufferQueueState_ {
 SLuint32 count;
 SLuint32 playIndex;
} SLBufferQueueState;

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of buffers currently in the queue</td>
</tr>
<tr>
<td>playIndex</td>
<td>Index of the currently playing buffer. This is a linear index that keeps a</td>
</tr>
<tr>
<td></td>
<td>cumulative count of the number of buffers played. It is set to zero by a call</td>
</tr>
<tr>
<td></td>
<td>to the SLBufferQueue::Clear() method [see section 8.12].</td>
</tr>
</tbody>
</table>
9.1.6 **SLDataFormat_MIME**

```c
typedef struct SLDataFormat_MIME_ {
    SLuint32   formatType;
    SLchar *   mimeType;
    SLuint32  containerType;
} SLDataFormat_MIME;
```

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formatType</td>
<td>The format type, which must always be SL_DATAFORMAT_MIME for this structure.</td>
</tr>
<tr>
<td>mimeType</td>
<td>The mime type of the data expressed as a string.</td>
</tr>
<tr>
<td>containerType</td>
<td>The container type of the data.</td>
</tr>
<tr>
<td></td>
<td>When an application uses this structure to specify the data source for a player use case, the application may leave the containerType</td>
</tr>
<tr>
<td></td>
<td>unspecified (for example SL_CONTAINERTYPE_UNSPECIFIED) or may provide a specific value as a hint to the player.</td>
</tr>
<tr>
<td></td>
<td>When an application uses this structure to specify the data sink for a recorder use case, the application is dictating the container type of</td>
</tr>
<tr>
<td></td>
<td>the captured content.</td>
</tr>
</tbody>
</table>

9.1.7 **SLDataFormat_PCM**

```c
typedef struct SLDataFormat_PCM_ {
    SLuint32   formatType;
    SLuint32   numChannels;
    SLuint32   samplesPerSec;
    SLuint32   bitsPerSample;
    SLuint32   containerSize;
    SLuint32  channelMask;
    SLuint32  endianness;
} SLDataFormat_PCM;
```

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formatType</td>
<td>The format type, which must always be SL_DATAFORMAT_PCM for this structure.</td>
</tr>
<tr>
<td>numChannels</td>
<td>Numbers of audio channels present in the data. Multi-channel audio is always interleaved in the data buffer.</td>
</tr>
<tr>
<td>samplesPerSec</td>
<td>The audio sample rate of the data.</td>
</tr>
<tr>
<td>bitsPerSample</td>
<td>Number of actual data bits in a sample.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>containerSize</td>
<td>The container size for PCM data in bits, for example 24 bit data in a 32 bit container. Data is left-justified within the container. For best performance, it is recommended that the container size be the size of the native data types.</td>
</tr>
<tr>
<td>channelMask</td>
<td>Channel mask indicating mapping of audio channels to speaker location. The channelMask member specifies which channels are present in the multichannel stream. The least significant bit corresponds to the front left speaker (SL_SPEAKER_FRONT_LEFT), the next least significant bit corresponds to the front right speaker (SL_SPEAKER_FRONT_RIGHT), and so on. The full list of valid speaker locations is defined in section 9.2.46. The channels specified in channelMask must be present in the prescribed order (from least significant bit up). For example, if only SL_SPEAKER_FRONT_LEFT and SL_SPEAKER_FRONT_RIGHT are specified, the samples for the front left speaker must come first in the interleaved stream. The number of bits set in channelMask should be the same as the number of channels specified in numChannels with the caveat that a default setting of zero indicates stereo format (i.e. the setting is equivalent to SL_SPEAKER_FRONT_LEFT</td>
</tr>
<tr>
<td>endianness</td>
<td>Endianness of the audio data. See SL_BYTEORDER macro for definition [see section 9.2.5].</td>
</tr>
</tbody>
</table>

9.1.8 SLDDataLocator_Address

```c
typedef struct SLDDataLocator_Address_ {
    SLuint32    locatorType;
    void        *pAddress;
    SLuint32    length;
} SLDDataLocator_Address;
```

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locatorType</td>
<td>Locator type, which must always be SLD_DATALOCATOR_ADDRESS for this structure.</td>
</tr>
<tr>
<td>pAddress</td>
<td>Address of the first byte of data.</td>
</tr>
<tr>
<td>length</td>
<td>Length of the data in bytes.</td>
</tr>
</tbody>
</table>
9.1.9 **SLDataLocator_IODevice**

typedef struct SLDataLocator_IODevice_ {
SLuint32 locatorType;
SLuint32 deviceType;
SLuint32 deviceID;
SLObjectItf device;
} SLDataLocator_IODevice;

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locatorType</td>
<td>Locator type, which must be SL_DATALOCATOR_IODEVICE for this structure [see section 9.2.9].</td>
</tr>
<tr>
<td>deviceType</td>
<td>Type of I/O device. See SL_IODEVICE macros in section 9.2.18.</td>
</tr>
<tr>
<td>deviceID</td>
<td>ID of the device. Ignored if device is not NULL.</td>
</tr>
<tr>
<td>device</td>
<td>I/O device object itself. Must be NULL if deviceID parameter is to be used.</td>
</tr>
</tbody>
</table>

9.1.10 **SLDataLocator_BufferQueue**

typedef struct SLDataLocator_BufferQueue {
SLuint32 locatorType;
SLuint32 numBuffers;
} SLDataLocator_BufferQueue;

Struct representing a data locator for a buffer queue:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locatorType</td>
<td>Locator type, which must be SL_DATALOCATOR_BUFFERQUEUE for this structure [see section 9.2.9].</td>
</tr>
<tr>
<td>numBuffers</td>
<td>Number of buffers to allocate for buffer queue</td>
</tr>
</tbody>
</table>
9.1.11 SLDDataLocator_MIDIBufferQueue

typedef struct SLDDataLocator_MIDIBufferQueue {
 SLuint32 locatorType;
 SLuint32 tpqn;
 SLuint32 numBuffers;
} SLDDataLocator_MIDIBufferQueue;

Struct representing a data locator for a MIDI buffer queue:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locatorType</td>
<td>Locator type, which must be SL_DATALOCATOR_MIDIBUFFERQUEUE for this structure [see section 9.2.9].</td>
</tr>
<tr>
<td>tpqn</td>
<td>MIDI ticks per quarter note (ticks per beat / pulses per quarter note). Range is [0, 32767].</td>
</tr>
<tr>
<td>numBuffers</td>
<td>Number of buffers to allocate for buffer queue</td>
</tr>
</tbody>
</table>

9.1.12 SLDDataLocator_OutputMix

typedef struct SLDDataLocator_OutputMix {
 SLuint32 locatorType;
 SLObjectItf outputMix;
} SLDDataLocator_OutputMix;

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locatorType</td>
<td>Locator type, which must be SL_DATALOCATOR_OUTPUTMIX for this structure [see section 9.2.9].</td>
</tr>
<tr>
<td>outputMix</td>
<td>The OutputMix object as retrieved from the engine.</td>
</tr>
</tbody>
</table>

9.1.13 SLDDataLocator_URI

typedef struct SLDDataLocator_URI_ {
 SLuint32 locatorType;
 SLchar * URI;
} SLDDataLocator_URI;

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>locatorType</td>
<td>Locator type, which must always be SL_DATALOCATOR_URI for this structure [see section 9.2.9].</td>
</tr>
<tr>
<td>URI</td>
<td>URI expressed as a string.</td>
</tr>
</tbody>
</table>
9.1.14 SLDDataSink

```c
typedef struct SLDDataSink_ {
    void *pLocator;
    void *pFormat;
} SLDDataSink;
```

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLocator</td>
<td>Pointer to the specified data locator structure. This may point to any of the following structures:</td>
</tr>
</tbody>
</table>
| | - SLDDataLocator_Address
| | - SLDDataLocatorIODevice
| | - SLDDataLocator_OutputMix
| | - SLDDataLocator_URI
| | - SLDDataLocator_BufferQueue
| | - SLDDataLocator_MIDI BufferQueue
| | The first field of each of these structures includes the 32 bit locatorType field, which identifies the locator type (see SL_DATALOCATOR definitions in section 9.2.9) and hence the structure pointed to. The locator SLDDataLocator_OutputMix is used in the common case where a player's output should be directed to the default audio output mix. |

<table>
<thead>
<tr>
<th>pFormat</th>
<th>A pointer to the specified format structure. This may point to any of the following structures.</th>
</tr>
</thead>
</table>
| | - SLDDataFormat_PCM
| | - SLDDataFormat_MIME
| | The first field of each of these structures includes the 32 bit formatType field, which identifies the format type (SL_DATAFORMAT definitions [see section 9.2.8]) and hence the structure pointed to.
| | This parameter is ignored if pLocator is SLDDataLocatorIODevice or SLDDataLocator_OutputMix. |
9.1.15 SLDDataSource

```c
typedef struct SLDDataSource_ {
    void *pLocator;
    void *pFormat;
} SLDDataSource;
```

Fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLocator</td>
<td>Pointer to the specified data locator structure. This may point to any of the following structures.</td>
</tr>
<tr>
<td></td>
<td>SLDDataLocator_Address</td>
</tr>
<tr>
<td></td>
<td>SLDDataLocator_BufferQueue</td>
</tr>
<tr>
<td></td>
<td>SLDDataLocatorIODevice</td>
</tr>
<tr>
<td></td>
<td>SLDDataLocator_MIDIBufferQueue</td>
</tr>
<tr>
<td></td>
<td>SLDDataLocator_URI</td>
</tr>
<tr>
<td></td>
<td>The first field of each of these structure includes the 32 bit locatorType field, which identifies the locator type (see SL_DATALOCATOR definitions) and hence the structure pointed to.</td>
</tr>
<tr>
<td>pFormat</td>
<td>A pointer to the specified format structure. This may point to any of the following structures.</td>
</tr>
<tr>
<td></td>
<td>SLDDataFormat_PCM</td>
</tr>
<tr>
<td></td>
<td>SLDDataFormat_MIME</td>
</tr>
<tr>
<td></td>
<td>The first field of each of these structure includes the 32 bit formatType field, which identifies the format type (SL_DATAFORMAT definitions) and hence the structure pointed to.</td>
</tr>
<tr>
<td></td>
<td>This parameter is ignored if pLocator is SLDDataLocatorIODevice.</td>
</tr>
</tbody>
</table>
9.1.16 SLEngineOption

typedef struct SLEngineOption_ {
 SLuint32 feature;
 SLuint32 data;
} SLEngineOption;

Structure used for specifying different options during engine creation:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>feature</td>
<td>Feature identifier. See SL_ENGINEOPTION macros [see section 9.2.15].</td>
</tr>
<tr>
<td>data</td>
<td>Value to use for feature.</td>
</tr>
</tbody>
</table>

9.1.17 SLEnvironmentalReverbSettings

typedef struct SLEnvironmentalReverbSettings_ {
 SLmillibel roomLevel;
 SLmillibel roomHFLevel;
 SLmillisecond decayTime;
 SLpermille decayHFRatio;
 SLmillibel reflectionsLevel;
 SLmillisecond reflectionsDelay;
 SLmillibel reverbLevel;
 SLmillisecond reverbDelay;
 SLpermille diffusion;
 SLpermille density;
} SLEnvironmentalReverbSettings;

This structure can store all the environmental reverb settings. The meaning of the parameters is defined in the SLEnvironmentalReverbItf interface [see section 8.19].

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>roomLevel</td>
<td>Environment’s volume level in millibels. The valid range is [SL_MILLIBEL_MIN, 0].</td>
</tr>
<tr>
<td>roomHFLevel</td>
<td>High-frequency attenuation level in millibels. The valid range is [SL_MILLIBEL_MIN, 0].</td>
</tr>
<tr>
<td>decayTime</td>
<td>Decay time in milliseconds. The valid range is [100, 20000].</td>
</tr>
<tr>
<td>decayHFRatio</td>
<td>Relative decay time at the high-frequency reference (5 kHz) using a permille scale. The valid range is [100, 2000].</td>
</tr>
<tr>
<td>reflectionsLevel</td>
<td>Early reflections attenuation level in millibels. The valid range is [SL_MILLIBEL_MIN, 1000].</td>
</tr>
<tr>
<td>reflectionsDelay</td>
<td>Early reflections delay length in milliseconds. The valid range is [0, 300].</td>
</tr>
<tr>
<td>reverbLevel</td>
<td>Late reverb level in millibels. The valid range is [SL_MILLIBEL_MIN, 2000].</td>
</tr>
</tbody>
</table>
9.1.18 SLHSL

```c
typedef struct SLHSL_ {
  SLmillidegree hue;
  SLpermille   saturation;
  SLpermille   lightness;
} SLHSL;
```

SLHSL represents a color defined in terms of the HSL color space.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hue</td>
<td>Hue. Range is [0, 360000] or [0° to 360°].</td>
</tr>
<tr>
<td>saturation</td>
<td>Saturation of the color. Range is [0, 1000] or [0% to 100.0%].</td>
</tr>
<tr>
<td>lightness</td>
<td>Lightness of the color. Range is [0, 1000] or [0% to 100.0%].</td>
</tr>
</tbody>
</table>

9.1.19 SLInterfaceID

```c
typedef const struct SLInterfaceID_ {
  SLuint32 time_low;
  SLuint16 time_mid;
  SLuint16 time_hi_and_version;
  SLuint16 clock_seq;
  SLuint8 node[6];
} * SLInterfaceID;
```

The interface ID type.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time_low</td>
<td>Low field of the timestamp.</td>
</tr>
<tr>
<td>time_mid</td>
<td>Middle field of the timestamp.</td>
</tr>
<tr>
<td>time_hi_and_version</td>
<td>High field of the timestamp multiplexed with the version number.</td>
</tr>
<tr>
<td>clock_seq</td>
<td>Clock sequence.</td>
</tr>
<tr>
<td>node</td>
<td>Spatially unique node identifier.</td>
</tr>
</tbody>
</table>
9.1.20 SLLEDDescriptor

typedef struct SLLEDDescriptor_ {
 SLuint8 ledCount;
 SLuint8 primaryLED;
 SLuint32 colorMask;
} SLLEDDescriptor;

SLLEDDescriptor represents the capabilities of the LED array I/O Device.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ledCount</td>
<td>Number of LEDs in the array. Range is [1, 32].</td>
</tr>
<tr>
<td>primaryLED</td>
<td>Index of the primary LED, which is the main status LED of the device. Range is [0, ledCount-1].</td>
</tr>
<tr>
<td>colorMask</td>
<td>Bitmask indicating which LEDs support color. Valid bits range from the least significant bit, which indicates the first LED in the array, to bit ledCount-1, which indicates the last LED in the array.</td>
</tr>
</tbody>
</table>

9.1.21 SLMetadataInfo

typedef struct SLMetadataInfo_ {
 SLuint32 size;
 SLuint32 encoding;
 SLchar langCountry[16];
 SLuint8 data[1];
} SLMetadataInfo;

SLMetadataInfo represents a key or a value from a metadata item key/value pair.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>Size of the data in bytes. size must be greater than 0.</td>
</tr>
<tr>
<td>encoding</td>
<td>Character encoding of the data.</td>
</tr>
<tr>
<td>langCountry</td>
<td>Language / country code of the data (see note below).</td>
</tr>
<tr>
<td>data</td>
<td>Key or value, as represented by the encoding.</td>
</tr>
</tbody>
</table>

The language / country code may be a language code, a language / country code, or a country code. When specifying the code, note that a partially-specified code will match fully-specified codes that match the part that is specified. For example, “en” will match “en-us” and other “en” variants. Likewise, “us” will match “en-us” and other “us” variants.

Formatting of language codes and language / country codes is defined by IETF RFC 3066 [RFC3066] (which incorporates underlying ISO specifications 639 [ISO639] and 3166 [ISO3166] and a syntax). Formatting of country codes is defined by ISO 3166 [ISO3166].
9.1.22 SLVec3D

typedef struct SLVec3D_ {
 SLint32 x;
 SLint32 y;
 SLint32 z;
} SLVec3D;

This structure is used for representing coordinates in Cartesian form, see section 4.4.2.1.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x-axis coordinate.</td>
</tr>
<tr>
<td>y</td>
<td>y-axis coordinate.</td>
</tr>
<tr>
<td>z</td>
<td>z-axis coordinate.</td>
</tr>
</tbody>
</table>

9.1.23 SLVibraDescriptor

typedef struct SLVibraDescriptor_ {
 SLboolean supportsFrequency;
 SLboolean supportsIntensity;
 SLmilliHertz minFrequency;
 SLmilliHertz maxFrequency;
} SLVibraDescriptor;

SLVibraDescriptor represents the capabilities of the Vibra I/O device.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>supportsFrequency</td>
<td>Boolean indicating whether the Vibra I/O device supports setting the frequency of vibration.</td>
</tr>
<tr>
<td>supportsIntensity</td>
<td>Boolean indicating whether the Vibra I/O device supports setting the intensity of vibration.</td>
</tr>
<tr>
<td>minFrequency</td>
<td>Minimum frequency supported by the Vibra I/O device. Range is [1, SL_MILLIHERTZ_MAX]. If supportsFrequency is set to SL_BOOLEAN_FALSE, this will be set to 0.</td>
</tr>
<tr>
<td>maxFrequency</td>
<td>Maximum frequency supported by the Vibra I/O device. Range is [minFrequency, SL_MILLIHERTZ_MAX]. If supportsFrequency is set to SL_BOOLEAN_FALSE, this will be set to 0.</td>
</tr>
</tbody>
</table>
9.2 Macros

9.2.1 SL_AUDIOCODEC

These macros are used for setting the audio encoding type.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOCODEC_PCM</td>
<td>PCM audio data.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_MP3</td>
<td>MPEG Layer III encoder.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_AMR</td>
<td>Adaptive Multi-Rate (AMR) speech encoder.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_AMRWB</td>
<td>Adaptive Multi-Rate Wideband (AMR-WB) speech encoder.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_AMRWBPLUS</td>
<td>Adaptive Multi-Rate Wideband Extended (AMR-WB+) speech encoder.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_AAC</td>
<td>MPEG4 Advanced Audio Coding.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_WMA</td>
<td>Windows Media Audio.</td>
</tr>
<tr>
<td>SL_AUDIOCODEC_REAL</td>
<td>Real Audio.</td>
</tr>
</tbody>
</table>
9.2.2 SL_AUDIOPROFILE and SL_AUDIOMODE

PCM Profiles and Modes

```c
#define SL_AUDIOPROFILE_PCM   ((SLuint32) 0x00000001)
```

The macros are used for defining the PCM audio profiles.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_PCM</td>
<td>Default Profile for PCM encoded Audio</td>
</tr>
</tbody>
</table>

MP3 Profiles and Modes

```c
#define SL_AUDIOPROFILE_MPEG1_L3   ((SLuint32) 0x00000001)
#define SL_AUDIOPROFILE_MPEG2_L3   ((SLuint32) 0x00000002)
#define SL_AUDIOPROFILE_MPEG25_L3  ((SLuint32) 0x00000003)
#define SL_AUDIOCHANMODE_MP3_MONO  ((SLuint32) 0x00000001)
#define SL_AUDIOCHANMODE_MP3_STEREO ((SLuint32) 0x00000002)
#define SL_AUDIOCHANMODE_MP3_JOINTSTEREO ((SLuint32) 0x00000003)
#define SL_AUDIOCHANMODE_MP3_DUAL  ((SLuint32) 0x00000004)
```

The macros are used for defining the MP3 audio profiles and modes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_MPEG1_L2</td>
<td>MPEG-1 Layer III.</td>
</tr>
<tr>
<td>SL_AUDIOPROFILE_MPEG2_L3</td>
<td>MPEG-2 Layer III.</td>
</tr>
<tr>
<td>SL_AUDIOPROFILE_MPEG25_L3</td>
<td>MPEG-2.5 Layer III.</td>
</tr>
<tr>
<td>SL_AUDIOCHANMODE_MP3_MONO</td>
<td>MP3 Mono mode.</td>
</tr>
<tr>
<td>SL_AUDIOCHANMODE_MP3_STEREO</td>
<td>MP3 Stereo Mode.</td>
</tr>
<tr>
<td>SL_AUDIOCHANMODE_MP3_JOINTSTEREO</td>
<td>MP3 Joint Stereo mode.</td>
</tr>
<tr>
<td>SL_AUDIOCHANMODE_MP3_DUAL</td>
<td>MP3 Dual Stereo mode.</td>
</tr>
</tbody>
</table>
AMR Profiles and Modes

#define SL_AUDIOPROFILE_AMR ((SLuint32) 0x00000001)
#define SL_AUDIOSTREAMFORMAT_CONFORMANCE ((SLuint32) 0x00000001)
#define SL_AUDIOSTREAMFORMAT_IF1 ((SLuint32) 0x00000002)
#define SL_AUDIOSTREAMFORMAT_IF2 ((SLuint32) 0x00000003)
#define SL_AUDIOSTREAMFORMAT_FSF ((SLuint32) 0x00000004)
#define SL_AUDIOSTREAMFORMAT_RTPPAYLOAD ((SLuint32) 0x00000005)
#define SL_AUDIOSTREAMFORMAT_ITU ((SLuint32) 0x00000006)

The macros are used for defining the AMR audio profiles and modes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_AMR</td>
<td>Adaptive Multi-Rate audio codec.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_CONFORMANCE</td>
<td>Standard test-sequence format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_IF1</td>
<td>Interface format 1.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_IF2</td>
<td>Interface format 2.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_FSF</td>
<td>File Storage format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_RTPPAYLOAD</td>
<td>RTP payload format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_ITU</td>
<td>ITU frame format.</td>
</tr>
</tbody>
</table>

AMR-WB Profiles and Modes

#define SL_AUDIOPROFILE_AMRWB ((SLuint32) 0x00000001)

The macros are used for defining the AMR-WB audio profiles.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_AMRWB</td>
<td>Adaptive Multi-Rate - Wideband.</td>
</tr>
</tbody>
</table>

AMR-WB+ Profiles and Modes

#define SL_AUDIOPROFILE_AMRWBPLUS ((SLuint32) 0x00000001)

The macros are used for defining the AMR-WB+ audio profiles.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_AMRWBPLUS</td>
<td>Extended Adaptive Multi-Rate - Wideband.</td>
</tr>
</tbody>
</table>
AAC Profiles and Modes

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_AAC_AAC</td>
<td>Advanced Audio Coding.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_MAIN</td>
<td>AAC Main Profile.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_LC</td>
<td>AAC Low Complexity.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_SCALABLE</td>
<td>AAC Scalable Sample Rate.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_LTP</td>
<td>ACC Long Term Prediction.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_HE</td>
<td>AAC High Efficiency.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_ERLC</td>
<td>AAC Error Resilient LC.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_LD</td>
<td>AAC Low Delay.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_HE_PS</td>
<td>AAC High Efficiency with Parametric Stereo Coding.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_AAC_HE_MPS</td>
<td>AAC High Efficiency with MPEG Surround Coding.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_MP2ADTS</td>
<td>MPEG-2 AAC Audio Data Transport Stream format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_MP4ADTS</td>
<td>MPEG-4 AAC Audio Data Transport Stream format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_MP4LOAS</td>
<td>Low Overhead Audio Stream format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_MP4LATM</td>
<td>Low Overhead Audio Transport Multiplex.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_ADIF</td>
<td>Audio Data Interchange Format.</td>
</tr>
<tr>
<td>SL_AUDIOSTREAMFORMAT_RAW</td>
<td>AAC Raw Format (access units).</td>
</tr>
</tbody>
</table>

Windows Media Audio Profiles and Modes

```c
#define SL_AUDIOPROFILE_WMA7    ((SLuint32) 0x00000001)
define SL_AUDIOPROFILE_WMA8    ((SLuint32) 0x00000002)
define SL_AUDIOPROFILE_WMA9    ((SLuint32) 0x00000003)
define SL_AUDIOPROFILE_WMA10   ((SLuint32) 0x00000004)
define SL_AUDIOMODE_WMA_LEVEL1  ((SLuint32) 0x00000001)
define SL_AUDIOMODE_WMA_LEVEL2  ((SLuint32) 0x00000002)
define SL_AUDIOMODE_WMA_LEVEL3  ((SLuint32) 0x00000003)
define SL_AUDIOMODE_WMA_LEVEL4  ((SLuint32) 0x00000004)
define SL_AUDIOMODE_WMAPRO_LEVELM0 ((SLuint32) 0x00000005)
define SL_AUDIOMODE_WMAPRO_LEVELM1 ((SLuint32) 0x00000006)
define SL_AUDIOMODE_WMAPRO_LEVELM2 ((SLuint32) 0x00000007)
define SL_AUDIOMODE_WMAPRO_LEVELM3 ((SLuint32) 0x00000008)
```

The macros are used for defining the WMA audio profiles and modes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_WMA7</td>
<td>Windows Media Audio Encoder V7.</td>
</tr>
<tr>
<td>SL_AUDIOPROFILE_WMA8</td>
<td>Windows Media Audio Encoder V8.</td>
</tr>
<tr>
<td>SL_AUDIOPROFILE_WMA10</td>
<td>Windows Media Audio Encoder V10.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMA_LEVEL1</td>
<td>WMA Level 1.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMA_LEVEL2</td>
<td>WMA Level 2.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMA_LEVEL3</td>
<td>WMA Level 3.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMA_LEVEL4</td>
<td>WMA Level 4.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMAPRO_LEVELM0</td>
<td>WMA Pro Level M0.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMAPRO_LEVELM1</td>
<td>WMA Pro Level M1.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMAPRO_LEVELM2</td>
<td>WMA Pro Level M2.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_WMAPRO_LEVELM3</td>
<td>WMA Pro Level M3.</td>
</tr>
</tbody>
</table>
RealAudio Profiles and Levels

```c
#define SL_AUDIOPROFILE_REALAUDIO   ((SLuint32) 0x00000001)
#define SL_AUDIOMODE_REALAUDIO_G2   ((SLuint32) 0x00000001)
#define SL_AUDIOMODE_REALAUDIO_8    ((SLuint32) 0x00000002)
#define SL_AUDIOMODE_REALAUDIO_10   ((SLuint32) 0x00000003)
#define SL_AUDIOMODE_REALAUDIO_SURROUND ((SLuint32) 0x00000004)
```

The macros are used for defining the Real Audio audio profiles and modes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_AUDIOPROFILE_REALAUDIO</td>
<td>RealAudio Encoder.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_REALAUDIO_G2</td>
<td>RealAudio G2.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_REALAUDIO_8</td>
<td>RealAudio 8.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_REALAUDIO_10</td>
<td>RealAudio 10.</td>
</tr>
<tr>
<td>SL_AUDIOMODE_REALAUDIO_SURROUND</td>
<td>RealAudio Surround.</td>
</tr>
</tbody>
</table>

9.2.3 SLAPIENTRY

```c
#define SLAPIENTRY <system dependent>
```

A system-dependent API entry point macro. This may be used to indicate the required calling conventions for global functions.

9.2.4 SL_BOOLEAN

```c
#define SL_BOOLEAN_FALSE ((SLboolean) 0x00000000)
#define SL_BOOLEAN_TRUE ((SLboolean) 0x00000001)
```

Canonical values for boolean type.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_BOOLEAN_FALSE</td>
<td>False value for SLboolean.</td>
</tr>
<tr>
<td>SL_BOOLEAN_TRUE</td>
<td>True value for SLboolean.</td>
</tr>
</tbody>
</table>
9.2.5 **SL_BYTEORDER**

```c
#define SL_BYTEORDER_BIGENDIAN ((SLuint32) 0x00000001)
#define SL_BYTEORDER_LITTLEENDIAN ((SLuint32) 0x00000002)
```

SL_BYTEORDER represents the byte order of a block of 16- or 32-bit data.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_BYTEORDER_BIGENDIAN</td>
<td>Big-endian data</td>
</tr>
<tr>
<td>SL_BYTEORDER_LITTLEENDIAN</td>
<td>Little-endian data</td>
</tr>
</tbody>
</table>

9.2.6 **SL_CHARACTERENCODING**

```c
#define SL_CHARACTERENCODING_UNKNOWN   ((SLuint32) 0x00000000)
#define SL_CHARACTERENCODING_BINARY   ((SLuint32) 0x00000001)
#define SL_CHARACTERENCODING.ASCII   ((SLuint32) 0x00000002)
#define SL_CHARACTERENCODING_BIG5   ((SLuint32) 0x00000003)
#define SL_CHARACTERENCODING.CODEPAGE1252  ((SLuint32) 0x00000004)
#define SL_CHARACTERENCODING_GB2312   ((SLuint32) 0x00000005)
#define SL_CHARACTERENCODING_HZGB2312   ((SLuint32) 0x00000006)
#define SL_CHARACTERENCODING_GB12345   ((SLuint32) 0x00000007)
#define SL_CHARACTERENCODING_GB18030   ((SLuint32) 0x00000008)
#define SL_CHARACTERENCODING_GBK    ((SLuint32) 0x00000009)
#define SL_CHARACTERENCODING.IMAPUTF7   ((SLuint32) 0x0000000A)
#define SL_CHARACTERENCODING_ISO2022JP   ((SLuint32) 0x0000000B)
#define SL_CHARACTERENCODING_ISO2022JP1  ((SLuint32) 0x0000000B)
#define SL_CHARACTERENCODING_ISO88591   ((SLuint32) 0x0000000C)
#define SL_CHARACTERENCODING_ISO885910   ((SLuint32) 0x0000000D)
#define SL_CHARACTERENCODING_ISO885913   ((SLuint32) 0x0000000E)
#define SL_CHARACTERENCODING_ISO885914   ((SLuint32) 0x0000000F)
#define SL_CHARACTERENCODING_ISO885915   ((SLuint32) 0x00000010)
#define SL_CHARACTERENCODING_ISO88592   ((SLuint32) 0x00000011)
#define SL_CHARACTERENCODING_ISO88593   ((SLuint32) 0x00000012)
#define SL_CHARACTERENCODING_ISO88594   ((SLuint32) 0x00000013)
#define SL_CHARACTERENCODING_ISO88595   ((SLuint32) 0x00000014)
#define SL_CHARACTERENCODING_ISO88596   ((SLuint32) 0x00000015)
#define SL_CHARACTERENCODING_ISO88597   ((SLuint32) 0x00000016)
#define SL_CHARACTERENCODING_ISO88598   ((SLuint32) 0x00000017)
#define SL_CHARACTERENCODING_ISO88599   ((SLuint32) 0x00000018)
#define SL_CHARACTERENCODING_ISOEOUCJP   ((SLuint32) 0x00000019)
#define SL_CHARACTERENCODING_SHIFTJIS   ((SLuint32) 0x0000001A)
#define SL_CHARACTERENCODING_SMS7BIT   ((SLuint32) 0x0000001B)
#define SL_CHARACTERENCODING_UTF7   ((SLuint32) 0x0000001C)
#define SL_CHARACTERENCODING_UTF8   ((SLuint32) 0x0000001D)
#define SL_CHARACTERENCODING_JAVA(CONFORMANTUTF8 ((SLuint32) 0x0000001E)
#define SL_CHARACTERENCODING_UTF16BE   ((SLuint32) 0x0000001F)
#define SL_CHARACTERENCODING_UTF16LE   ((SLuint32) 0x00000020)
```

SL_CHARACTERENCODING represents a character encoding for metadata keys and values.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_CHARACTERENCODING_UNKNOWN</td>
<td>Unknown character encoding.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_BINARY</td>
<td>Binary data.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ASCII</td>
<td>ASCII.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_BIG5</td>
<td>Big 5.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_CODEPAGE1252</td>
<td>Microsoft Code Page 1252.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_GB2312</td>
<td>GB 2312 (Chinese).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_HZGB2312</td>
<td>HZ GB 2312 (Chinese).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_GB12345</td>
<td>GB 12345 (Chinese).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_GB18030</td>
<td>GB 18030 (Chinese).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_GBK</td>
<td>GBK (CP936) (Chinese).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO88591</td>
<td>ISO-8859-1 (Latin-1).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO88593</td>
<td>ISO-8859-1 (Latin-3).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO88596</td>
<td>ISO-8859-1 (Latin/Arabic).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO88597</td>
<td>ISO-8859-1 (Latin/Greek).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO885910</td>
<td>ISO-8859-1 (Latin-6).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO885914</td>
<td>ISO-8859-1 (Latin-8).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_ISO8EUCJP</td>
<td>ISO EUC-JP.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_SHIFTJIS</td>
<td>Shift-JIS (Japanese).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_SMS7BIT</td>
<td>SMS 7-bit.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_UTF7</td>
<td>Unicode UTF-7.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_IMAPUTF7</td>
<td>Unicode UTF-7 per IETF RFC 2060.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_UTF8</td>
<td>Unicode UTF-8.</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_JAVACONFORMANTUTF8</td>
<td>Unicode UTF-8 (Java Conformant).</td>
</tr>
</tbody>
</table>
Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_CHARACTERENCODING_UTF16BE</td>
<td>Unicode UTF-16 (Big Endian).</td>
</tr>
<tr>
<td>SL_CHARACTERENCODING_UTF16LE</td>
<td>Unicode UTF-16 (Little Endian).</td>
</tr>
</tbody>
</table>

9.2.7 SL_CONTAINERTYPE

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_CONTAINERTYPE_UNSPECIFIED</td>
<td>The container type is not specified.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_RAW</td>
<td>There is no container. Content is in raw form.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_ASF</td>
<td>The container type is ASF.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_AVI</td>
<td>The container type is AVI.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_BMP</td>
<td>The container type is BMP.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_JPG</td>
<td>The container type is JPEG.</td>
</tr>
</tbody>
</table>

SL_CONTAINERTYPE represents the container type of the data source or sink.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_CONTAINERTYPE_JPG2000</td>
<td>The container type is JPEG 2000.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_M4A</td>
<td>The container type is M4A.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_MP3</td>
<td>The container type is MP3.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_MP4</td>
<td>The container type is MP4.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_MPEG_ES</td>
<td>The container type is MPEG Elementary Stream.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_MPEG_PS</td>
<td>The container type is MPEG Program Stream.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_MPEG_TS</td>
<td>The container type is MPEG Transport Stream.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_QT</td>
<td>The container type is QuickTime.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_WAV</td>
<td>The container type is WAV.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_XMF_0</td>
<td>The container type is XMF Type 0.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_XMF_1</td>
<td>The container type is XMF Type 1.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_XMF_2</td>
<td>The container type is Mobile XMF (XMF Type 2).</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_XMF_3</td>
<td>The container type is Mobile XMF with Audio Clips (XMF Type 3).</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_XMF_GENERIC</td>
<td>The container type is the XMF Meta File Format (no particular XMF File Type)</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_AMR</td>
<td>This container type is the file storage format variant of AMR (the magic number in the header can be used to disambiguate between AMR-NB and AMR-WB).</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_AAC</td>
<td>This container type is for ADIF and ADTS variants of AAC. This refers to AAC in .aac files.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_3GPP</td>
<td>The container type is 3GPP.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_3GA</td>
<td>This container type is an audio-only variant of the 3GPP format, mainly used in 3G phones.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_RM</td>
<td>This container type is Real Media.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_DMF</td>
<td>This container type is Divx media format.</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_SMF</td>
<td>This container type is a standard MIDI file (SMF) [SP-MIDI].</td>
</tr>
<tr>
<td>SL_CONTAINERTYPE_MOBILE_DLS</td>
<td>This container type is a Mobile DLS file [mDLS].</td>
</tr>
</tbody>
</table>
9.2.8 SL_DATAFORMAT

```c
#define SL_DATAFORMAT_MIME ((SLuint32) 0x00000001)
#define SL_DATAFORMAT_PCM  ((SLuint32) 0x00000002)
#define SL_DATAFORMAT_RESERVED3 ((SLuint32) 0x00000003)
```

These values represent the possible data locators:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DATAFORMAT_MIME</td>
<td>Data format is specified as a MIME type.</td>
</tr>
<tr>
<td>SL_DATAFORMAT_PCM</td>
<td>Data format is PCM.</td>
</tr>
<tr>
<td>SL_DATAFORMAT_RESERVED3</td>
<td>Reserved value.</td>
</tr>
</tbody>
</table>

9.2.9 SL_DATALOCATOR

```c
#define SL_DATALOCATOR_URI   ((SLuint32) 0x00000001)
#define SL_DATALOCATOR_ADDRESS  ((SLuint32) 0x00000002)
#define SL_DATALOCATOR_IODEVICE  ((SLuint32) 0x00000003)
#define SL_DATALOCATOR_OUTPUTMIX  ((SLuint32) 0x00000004)
#define SL_DATALOCATOR_RESERVED5  ((SLuint32) 0x00000005)
#define SL_DATALOCATOR_BUFFERQUEUE ((SLuint32) 0x00000006)
#define SL_DATALOCATOR_MIDIBUFFERQUEUE ((SLuint32) 0x00000007)
#define SL_DATALOCATOR_RESERVED8  ((SLuint32) 0x00000008)
```

These values represent the possible data locators:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DATALOCATOR_URI</td>
<td>Data resides at the specified URI.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_ADDRESS</td>
<td>Data is stored at the specified memory-mapped address.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_IODEVICE</td>
<td>Data will be generated or consumed by the specified IO device. Note: for audio output use the output mix.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_OUTPUTMIX</td>
<td>Data will be consumed by the specified audio output mix.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_RESERVED5</td>
<td>Reserved value.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_BUFFERQUEUE</td>
<td>Identifier for an SLDataLocator_BufferQueue.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_MIDIBUFFERQUEUE</td>
<td>Identifier for an SLDataLocator_MIDIBufferQueue.</td>
</tr>
<tr>
<td>SL_DATALOCATOR_RESERVED8</td>
<td>Reserved value.</td>
</tr>
</tbody>
</table>
9.2.10 SL_DEFAULTDEVICEID

This macro may be used with any method that manipulates device IDs.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DEFAULTDEVICEID_AUDIOINPUT</td>
<td>Identifier denoting the set of input devices that the implementation receives audio from by default.</td>
</tr>
<tr>
<td>SL_DEFAULTDEVICEID_AUDIOOUTPUT</td>
<td>Identifier denoting the set of output devices that the implementation sends audio to by default.</td>
</tr>
<tr>
<td>SL_DEFAULTDEVICEID_LED</td>
<td>Identifier denoting default LED array device.</td>
</tr>
<tr>
<td>SL_DEFAULTDEVICEID_VIBRA</td>
<td>Identifier denoting default vibra device.</td>
</tr>
<tr>
<td>SL_DEFAULTDEVICEID_RESERVED1</td>
<td>Reserved value.</td>
</tr>
</tbody>
</table>

9.2.11 SL_DEVICECONNECTION

These macros list the various types of I/O device connections possible. These connections are mutually exclusive for a given I/O device.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DEVCONNECTION_INTEGRATED</td>
<td>I/O device is integrated onto the system (that is, for example, mobile phone and, music player).</td>
</tr>
<tr>
<td>SL_DEVCONNECTION_ATTACHED_WIRED</td>
<td>I/O device is connected to the system via a wired connection. Additional macros might be added if more granularity is needed for each wired connection (such as USB, proprietary).</td>
</tr>
<tr>
<td>SL_DEVCONNECTION_ATTACHED_WIRELESS</td>
<td>I/O device is connected to the system via a wireless connection. Additional macros might be added if more granularity is needed for each wireless connection (such as Bluetooth).</td>
</tr>
</tbody>
</table>
SL_DEVCONNECTIONNETWORK

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DEVCONNECTION_NETWORK</td>
<td>I/O device is connected to the system via some kind of network connection (either wired or wireless). This is different from the above connections (such as Bluetooth headset or wired accessory) in the sense that this connection could be to a remote device that could be quite distant geographically (unlike a Bluetooth headset or a wired headset that are in close proximity to the system). Also, a network connection implies going through some kind of network routing infrastructure that is not covered by the attached macros above. A Bluetooth headset or a wired headset represents a peer-to-peer connection, whereas a network connection does not. Examples of such network audio I/O devices include remote content servers that feed audio input to the system or a remote media renderer that plays out audio from the system, transmitted to it across a network.</td>
</tr>
</tbody>
</table>

9.2.12 SL_DEVLOCATION

```
#define SL_DEVLOCATION_HANDSET  ((SLuint16) 0x0001)
#define SL_DEVLOCATION_HEADSET  ((SLuint16) 0x0002)
#define SL_DEVLOCATION_CARKIT   ((SLuint16) 0x0003)
#define SL_DEVLOCATION_DOCK     ((SLuint16) 0x0004)
#define SL_DEVLOCATION_REMOTE   ((SLuint16) 0x0005)
```

These macros list the location of the I/O device.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DEVLOCATION_HANDSET</td>
<td>I/O device is on the handset.</td>
</tr>
<tr>
<td>SL_DEVLOCATION_HEADSET</td>
<td>I/O device is on a headset.</td>
</tr>
<tr>
<td>SL_DEVLOCATION_CARKIT</td>
<td>I/O device is on a carkit.</td>
</tr>
<tr>
<td>SL_DEVLOCATION_DOCK</td>
<td>I/O device is on a dock.</td>
</tr>
<tr>
<td>SL_DEVLOCATION_REMOTE</td>
<td>I/O device is in a remote location, most likely connected via some kind of a network.</td>
</tr>
</tbody>
</table>

Although it might seem like SL_DEVLOCATION_REMOTE is redundant since it is currently used with only SL_DEVCONNECTION_NETWORK, it is needed since none of the other device location macros fit a device whose connection type is SL_DEVCONNECTION_NETWORK.
9.2.13 SL_DEVICESCOPE

#define SL_DEVSCOPE_UNKNOWN ((SLuint16) 0x0001)
#define SL_DEVSCOPE_ENVIRONMENT ((SLuint16) 0x0002)
#define SL_DEVSCOPE_USER ((SLuint16) 0x0003)

These macros list the scope of the I/O device with respect to the end user. These macros help the application to make routing decisions based on the type of content (such as audio) being rendered. For example, telephony downlink will always default to a “user” audio output device unless specifically changed by the user.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DEVSCOPE_UNKNOWN</td>
<td>I/O device can have either a user scope or an environment scope or an as-yet-undefined scope. Good examples of audio I/O devices with such a scope would be line-in and line-out jacks. It is difficult to tell what types of devices will be plugged into these jacks. I/O devices connected via a network connection also fall into this category.</td>
</tr>
<tr>
<td>SL_DEVSCOPE_ENVIRONMENT</td>
<td>I/O device allows environmental (public) input or playback of content (such as audio). For example, an integrated loudspeaker is an “environmental” audio output device, since audio rendered to it can be heard by multiple people. Similarly, a microphone that can accept audio from multiple people is an “environmental” audio input device.</td>
</tr>
<tr>
<td>SL_DEVSCOPE_USER</td>
<td>I/O device allows input from or playback of content (such as audio) to a single user. For example, an earpiece speaker is a single-user audio output device since audio rendered to it can be heard only by one person. Similarly, the integrated microphone on a mobile phone is a single-user input device – it accepts input from just one person.</td>
</tr>
</tbody>
</table>
9.2.14 **SL_DYNAMIC_ITF**

```c
#define SL_DYNAMIC_ITF_EVENT_RUNTIME_ERROR \
   ((SLuint32) 0x00000001)
#define SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION \
   ((SLuint32) 0x00000002)
#define SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST \
   ((SLuint32) 0x00000003)
#define SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANENTLY \
   ((SLuint32) 0x00000004)
#define SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE \
   ((SLuint32) 0x00000005)
```

These values are used for identifying events used for dynamic interface management.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_DYNAMIC_ITF_EVENT_RUNTIME_ERROR</td>
<td>Runtime error.</td>
</tr>
<tr>
<td>SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION</td>
<td>An asynchronous operation has terminated.</td>
</tr>
<tr>
<td>SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST</td>
<td>Resources have been stolen from the dynamically managed interface, causing it to become suspended.</td>
</tr>
<tr>
<td>SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANENTLY</td>
<td>Resources have been stolen from the dynamically managed interface, causing it to become unrecoverable.</td>
</tr>
<tr>
<td>SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE</td>
<td>Resources have become available, which may enable the dynamically managed interface to resume.</td>
</tr>
</tbody>
</table>
9.2.15 SL_ENGINEOPTION

#define SL_ENGINEOPTION_THREADSAFE ((SLuint32) 0x00000001)
#define SL_ENGINEOPTION_LOSSOFCONTROL ((SLuint32) 0x00000002)

Engine object creation options (see section 6.1).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_ENGINEOPTION_THREADSAFE</td>
<td>Thread safe engine creation option used with SLEngineOption structure [see section 9.1.16]. If the data field of the SLEngineOption structure is set to SL_BOOLEAN_TRUE, the engine object is created in thread-safe mode. Otherwise the engine object is created a non-thread-safe mode [see section 4.1.1].</td>
</tr>
<tr>
<td>SL_ENGINEOPTION_LOSSOFCONTROL</td>
<td>Global loss-of-control setting used with SLEngineOption structure [see section 9.1.16]. If the data field of the SLEngineOption structure is set to SL_BOOLEAN_TRUE, the engine object allows loss-of-control notifications to occur on interfaces. Otherwise, none of the interfaces exhibits loss-of-control behavior. This flag defaults to SL_BOOLEAN_FALSE if it is not explicitly turned on during engine creation. This global setting is best suited for applications that are interested in coarse-grained loss-of-control functionality - either it is allowed for that instance of the engine object or not. See SLObjectItf for details on loss-of-control.</td>
</tr>
</tbody>
</table>

9.2.16 SL_EQUALIZER

#define SL_EQUALIZER_UNDEFINED ((SLuint16) 0xFFFF)

This value is used when equalizer setting is not defined.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_EQUALIZER_UNDEFINED</td>
<td>The setting is not defined.</td>
</tr>
</tbody>
</table>
9.2.17 SL_I3DL2 Environmental Reverb Presets

#define SL_I3DL2_ENVIRONMENT_PRESET_DEFAULT
 { SL_MILLIBEL_MIN, 0, 1000, 500, SL_MILLIBEL_MIN, 20,
 SL_MILLIBEL_MIN, 40, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_GENERIC
 { -1000, -100, 1490, 830, -2602, 7, 200, 11, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PADDEDCELL
 { -1000, -6000, 170, 100, -1204, 1, 207, 2, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_ROOM
 { -1000, -454, 400, 830, -1646, 2, 53, 3, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_BATHROOM
 { -1000, -1200, 1490, 540, -370, 7, 1030, 11, 1000, 600 }
#define SL_I3DL2_ENVIRONMENT_PRESET_LIVINGROOM
 { -1000, -600, 500, 100, -1376, 3, -1104, 4, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_STONEROOM
 { -1000, -300, 2310, 640, -711, 12, 83, 17, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_AUDITORIUM
 { -1000, -476, 4320, 590, -789, 20, -289, 30, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CONCERTHALL
 { -1000, -500, 3920, 700, -1230, 20, -2, 29, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CAVE
 { -1000, 0, 2910, 1300, -602, 15, -302, 22, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_ARENA
 { -1000, -698, 7240, 330, -1166, 20, 16, 30, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_HANGAR
 { -1000, -1000, 10050, 230, -602, 20, 198, 30, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CARPETEDHALLWAY
 { -1000, -4000, 300, 100, -1831, 2, -1630, 30, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_HALLWAY
 { -1000, -300, 1490, 590, -1219, 7, 441, 11, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_STONECORRIDOR
 { -1000, -237, 2700, 790, -1214, 13, 395, 20, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_ALLEY
 { -1000, -270, 1490, 860, -1204, 7, -4, 11, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_FOREST
 { -1000, -3300, 1490, 540, -2560, 162, -613, 88, 790, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_CITY
 { -1000, -800, 1490, 670, -2273, 7, -2217, 11, 500, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_MOUNTAINS
 { -1000, -2500, 1490, 210, -2780, 300, -2014, 100, 270, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_QUARRY
 { -1000, -1000, 1490, 830, SL_MILLIBEL_MIN, 61, 500, 25, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PLAIN
 { -1000, -2000, 1490, 500, -2466, 179, -2514, 100, 210, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PARKINGLOT
 { -1000, 0, 1650, 1500, -1363, 8, -1153, 12, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_SEWERPIPE
 { -1000, -1000, 2810, 140, 429, 14, 648, 21, 800, 600 }
#define SL_I3DL2_ENVIRONMENT_PRESET_UNDERWATER
 { -1000, -4000, 1490, 100, -449, 7, 1700, 11, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_SMALLROOM
 { -1000, -600, 1100, 830, -400, 5, 500, 10, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_MEDIUMROOM
 { -1000,-600, 1300, 830, -1000, 20, -200, 20, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_LARGEROOM
 { -1000,-600, 1500, 830, -1600, 5, -1000, 40, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_MEDIUMHALL
 { -1000,-600, 1800, 700, -1300, 15, -800, 30, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_LARGEHALL
 { -1000,-600, 1800, 700, -2000, 30, -1400, 60, 1000, 1000 }
#define SL_I3DL2_ENVIRONMENT_PRESET_PLATE
 { -1000,-200, 1300, 900, 0, 2, 0, 10, 1000, 750 }

These macros are pre-defined sets of properties that are equivalent to those defined in the I3DL2 [I3DL2] help headers. These can be used for filling in the SLEnvironmentalReverbSettings structure [see section 9.1.17].

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_DEFAULT</td>
<td>Default environment, with no reverb.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_GENERIC</td>
<td>Generic environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_PADDEDCELL</td>
<td>Padded cell environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_ROOM</td>
<td>Room environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_BATHROOM</td>
<td>Bathroom environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_LIVINGROOM</td>
<td>Living room environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_STONEROOM</td>
<td>Stone room environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_AUDITORIUM</td>
<td>Auditorium environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_CONCERTHALL</td>
<td>Concert hall environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_CAVE</td>
<td>Cave environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_ARENA</td>
<td>Arena environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_HANGAR</td>
<td>Hangar environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_CARPETEDHALLWAY</td>
<td>Carpeted hallway environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_HALLWAY</td>
<td>Hallway environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_STONECORRIDOR</td>
<td>Stone corridor environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_ALLEY</td>
<td>Alley environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_FOREST</td>
<td>Forest environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_CITY</td>
<td>City environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_MOUNTAINS</td>
<td>Mountains environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_QUARRY</td>
<td>Quarry environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_PLAIN</td>
<td>Plain environment.</td>
</tr>
<tr>
<td>SL_I3DL2_ENVIRONMENT_PRESET_PARKINGLOT</td>
<td>Parking lot environment.</td>
</tr>
</tbody>
</table>
9.2.18 SL_IODEVICE

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_IODEVICE_AUDIOINPUT</td>
<td>Device for audio input such as microphone or line-in.</td>
</tr>
<tr>
<td>SL_IODEVICE_LEDARRAY</td>
<td>Device for LED arrays.</td>
</tr>
<tr>
<td>SL_IODEVICE_VIBRA</td>
<td>Device for vibrators.</td>
</tr>
<tr>
<td>SL_IODEVICE_RESERVED4</td>
<td>Reserved.</td>
</tr>
<tr>
<td>SL_IODEVICE_RESERVED5</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

These macros are used when creating I/O device data sources and sinks.

9.2.19 SL_METADATA_FILTER

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_METADATA_FILTER_KEY</td>
<td>Enable filtering by key.</td>
</tr>
<tr>
<td>SL_METADATA_FILTER_LANG</td>
<td>Enable filtering by language / country code.</td>
</tr>
<tr>
<td>SL_METADATA_FILTER_ENCODING</td>
<td>Enable filtering by value encoding.</td>
</tr>
</tbody>
</table>

Bit-masks for metadata filtering criteria.
9.2.20 **SL_METADATATRAVERSALMODE**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_METADATATRAVERSALMODE_ALL</td>
<td>Search the file linearly without considering its logical organization.</td>
</tr>
<tr>
<td>SL_METADATATRAVERSALMODE_NODE</td>
<td>Search by individual nodes, boxes, chunks, etc. within a file. (This is the default mode, with the default active node being the root node.)</td>
</tr>
</tbody>
</table>

9.2.21 SL_MIDIMESSAGETYPE

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_MIDIMESSAGETYPE_NOTE_ON_OFF</td>
<td>Note On / Note Off messages (status bytes 8n / 9n)</td>
</tr>
<tr>
<td>SL_MIDIMESSAGETYPE_POLY_PRESSURE</td>
<td>Polyphonic key pressure / Aftertouch messages (status byte An)</td>
</tr>
<tr>
<td>SL_MIDIMESSAGETYPE_CONTROL_CHANGE</td>
<td>Control change messages (status byte Bn)</td>
</tr>
<tr>
<td>SL_MIDIMESSAGETYPE_PROGRAM_CHANGE</td>
<td>Program change messages (status byte Cn)</td>
</tr>
<tr>
<td>SL_MIDIMESSAGETYPE_CHANNEL_PRESSURE</td>
<td>Channel pressure / Aftertouch messages (status byte Dn)</td>
</tr>
<tr>
<td>SL_MIDIMESSAGETYPE_PITCH_BEND</td>
<td>Pitch bend change messages (status byte En)</td>
</tr>
<tr>
<td>SL_MIDIMESSAGETYPE_SYSTEM_MESSAGE</td>
<td>System messages, including System Exclusive, System Common, and System Real Time (status byte Fn)</td>
</tr>
</tbody>
</table>
9.2.22 SL_MILLIBEL

#define SL_MILLIBEL_MAX ((SLmillibel) 0x7FFF)
#define SL_MILLIBEL_MIN ((SLmillibel) (-SL_MILLIBEL_MAX-1))

Limit values for millibel units.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_MILLIBEL_MAX</td>
<td>Maximum volume level.</td>
</tr>
<tr>
<td>SL_MILLIBEL_MIN</td>
<td>Minimum volume level. This volume may be treated as silence in some implementations.</td>
</tr>
</tbody>
</table>

9.2.23 SL_MILLIHERTZ_MAX

#define SL_MILLIHERTZ_MAX ((SLmilliHertz) 0xFFFFFFFF)

Limit value for milliHertz unit.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_MILLIHERTZ_MAX</td>
<td>A macro for representing the maximum possible frequency.</td>
</tr>
</tbody>
</table>

9.2.24 SL_MILLIMETER_MAX

#define SL_MILLIMETER_MAX ((SLmillimeter) 0x7FFFFFFF)

Limit value for millimeter unit.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_MILLIMETER_MAX</td>
<td>A macro for representing the maximum possible positive distance.</td>
</tr>
</tbody>
</table>

9.2.25 SL_NODE_PARENT

#define SL_NODE_PARENT ((SLuint32) 0xFFFFFFFF)

SL_NODE_PARENT is used by SLMetadataTraversalItf::SetActiveNode to set the current scope to the node’s parent.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_NODE_PARENT</td>
<td>Used for setting the active parent node.</td>
</tr>
</tbody>
</table>
9.2.26 SL_NODETYPE

#define SL_NODETYPE_UNSPECIFIED ((SLuint32) 0x00000001)
#define SL_NODETYPE_AUDIO ((SLuint32) 0x00000002)
#define SL_NODETYPE_VIDEO ((SLuint32) 0x00000003)
#define SL_NODETYPE_IMAGE ((SLuint32) 0x00000004)

SL_NODETYPE represents the type of a node.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_NODETYPE_UNSPECIFIED</td>
<td>Unspecified node type.</td>
</tr>
<tr>
<td>SL_NODETYPE_AUDIO</td>
<td>Audio node.</td>
</tr>
<tr>
<td>SL_NODETYPE_VIDEO</td>
<td>Video node.</td>
</tr>
<tr>
<td>SL_NODETYPE_IMAGE</td>
<td>Image node.</td>
</tr>
</tbody>
</table>
OpenSL ES 1.0 Specification

9.2.27 SL_OBJECT_EVENT

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_OBJECT_EVENT_RUNTIME_ERROR</td>
<td>Runtime error.</td>
</tr>
<tr>
<td>SL_OBJECT_EVENT_ASYNC_TERMINATION</td>
<td>An asynchronous operation has terminated.</td>
</tr>
<tr>
<td>SL_OBJECT_EVENT_RESOURCES_LOST</td>
<td>Resources have been stolen from the object, causing it to become unrealized or suspended.</td>
</tr>
<tr>
<td>SL_OBJECT_EVENT_RESOURCES_AVAILABLE</td>
<td>Resources have become available, which may enable the object to recover.</td>
</tr>
<tr>
<td>SL_OBJECT_EVENT_ITF_CONTROL_TAKEN</td>
<td>An interface has lost control.</td>
</tr>
<tr>
<td></td>
<td>This event cannot be followed by another SL_OBJECT_EVENT_ITF_CONTROL_TAKEN event (for the interface in question).</td>
</tr>
<tr>
<td>SL_OBJECT_EVENT_ITF_CONTROL_RETURNED</td>
<td>Control was returned to an interface.</td>
</tr>
<tr>
<td></td>
<td>This event cannot be followed by another SL_OBJECT_EVENT_ITF_CONTROL.Returned event (for the interface in question).</td>
</tr>
<tr>
<td>SL_OBJECT_EVENT_ITF_PARAMETERS_CHANGED</td>
<td>Some of the parameters of the interface in question were changed by other entity. (If the application wants to know the new values, it should use getters.)</td>
</tr>
<tr>
<td></td>
<td>This event can only occur (for the interface in question) between SL_OBJECT_EVENT_ITF_CONTROL_TAKEN and SL_OBJECT_EVENT_ITF_CONTROL_RETURNED events.</td>
</tr>
</tbody>
</table>
9.2.28 SL_OBJECT_STATE

#define SL_OBJECT_STATE_UNREALIZED ((SLuint32) 0x00000001)
#define SL_OBJECT_STATE_REALIZED ((SLuint32) 0x00000002)
#define SL_OBJECT_STATE_SUSPENDED ((SLuint32) 0x00000003)

These macros are used to identify the object states.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_OBJECT_STATE_UNREALIZED</td>
<td>Unrealized state.</td>
</tr>
<tr>
<td>SL_OBJECT_STATE_REALIZED</td>
<td>Realized state.</td>
</tr>
<tr>
<td>SL_OBJECT_STATE_SUSPENDED</td>
<td>Suspended state.</td>
</tr>
</tbody>
</table>

9.2.29 SL_OBJECTID

#define SL_OBJECTID_ENGINE ((SLuint32) 0x00001001)
#define SL_OBJECTID_LEDDEVICE ((SLuint32) 0x00001002)
#define SL_OBJECTID_VIBRADEVICE ((SLuint32) 0x00001003)
#define SL_OBJECTID_AUDIOPLAYER ((SLuint32) 0x00001004)
#define SL_OBJECTID_AUDIORECORDER ((SLuint32) 0x00001005)
#define SL_OBJECTID_MIDIPLAYER ((SLuint32) 0x00001006)
#define SL_OBJECTID_LISTENER ((SLuint32) 0x00001007)
#define SL_OBJECTID_3DGROUP ((SLuint32) 0x00001008)
#define SL_OBJECTID_OUTPUTMIX ((SLuint32) 0x00001009)
#define SL_OBJECTID_METADATAEXTRACTOR ((SLuint32) 0x0000100A)

These macros are the object type identifiers use while querying for the supported interfaces.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_OBJECTID_ENGINE</td>
<td>Engine Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_LEDDEVICE</td>
<td>LED Device Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_VIBRADEVICE</td>
<td>Vibra Device Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_AUDIOPLAYER</td>
<td>Audio Player Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_MIDIPLAYER</td>
<td>MIDI Player Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_LISTENER</td>
<td>Listener Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_3DGROUP</td>
<td>3D Group Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_OUTPUTMIX</td>
<td>Output Mix Object ID.</td>
</tr>
<tr>
<td>SL_OBJECTID_METADATAEXTRACTOR</td>
<td>Metadata Extractor Object ID.</td>
</tr>
</tbody>
</table>
9.2.30 SL_PCM_SAMPLE_FORMAT

These macros list the various sample formats that are possible on audio input and output devices.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PCM_SAMPLE_FORMAT_FIXED_8</td>
<td>Fixed-point 8-bit samples in 8-bit container.</td>
</tr>
<tr>
<td>SL_PCM_SAMPLE_FORMAT_FIXED_16</td>
<td>Fixed-point 16-bit samples in 16-bit container.</td>
</tr>
<tr>
<td>SL_PCM_SAMPLE_FORMAT_FIXED_20</td>
<td>Fixed-point 20-bit samples in 32-bit container left-justified.</td>
</tr>
<tr>
<td>SL_PCM_SAMPLE_FORMAT_FIXED_24</td>
<td>Fixed-point 24-bit samples in 32-bit container left-justified.</td>
</tr>
<tr>
<td>SL_PCM_SAMPLE_FORMAT_FIXED_28</td>
<td>Fixed-point 28-bit samples in 32-bit container left-justified.</td>
</tr>
<tr>
<td>SL_PCM_SAMPLE_FORMAT_FIXED_32</td>
<td>Fixed-point 32-bit samples in 32-bit container left-justified.</td>
</tr>
</tbody>
</table>

9.2.31 SL_PLAY_EVENT

These values represent the possible play events.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PLAY_EVENT_HEADATEND</td>
<td>Playback head is at the end of the current content and the player has stopped.</td>
</tr>
<tr>
<td>SL_PLAY_EVENT_HEADATMARKER</td>
<td>Playback head is at the specified marker position.</td>
</tr>
<tr>
<td>SL_PLAY_EVENT_HEADATNEWPOS</td>
<td>Playback head is at a new position (period between notifications is specified in by application).</td>
</tr>
<tr>
<td>SL_PLAY_EVENT_HEADMOVING</td>
<td>Playback head has begun to move.</td>
</tr>
<tr>
<td>SL_PLAY_EVENT_HEADSTALLED</td>
<td>Playback head has temporarily stopped moving.</td>
</tr>
</tbody>
</table>
9.2.32 SL_PLAYSTATE

#define SL_PLAYSTATE_STOPPED ((SLuint32) 0x00000001)
#define SL_PLAYSTATE_PAUSED ((SLuint32) 0x00000002)
#define SL_PLAYSTATE_PLAYING ((SLuint32) 0x00000003)

These values represent the playback state of an object:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PLAYSTATE_STOPPED</td>
<td>Player is stopped. The playback head is forced to the beginning of the content and is not trying to move.</td>
</tr>
<tr>
<td>SL_PLAYSTATE_PAUSED</td>
<td>Player is paused. The playback head may be anywhere within the content but is not trying to move.</td>
</tr>
<tr>
<td>SL_PLAYSTATE_PLAYING</td>
<td>Player is playing. The playback head may be anywhere within the content and is trying to move.</td>
</tr>
</tbody>
</table>

9.2.33 SL_PREFETCHEVENT

#define SL_PREFETCHEVENT_STATUSCHANGE ((SLuint32) 0x00000001)
#define SL_PREFETCHEVENT_FILLLEVELCHANGE ((SLuint32) 0x00000002)

These values represent the possible prefetch related events:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PREFETCHEVENT_STATUSCHANGE</td>
<td>Prefetch status has changed.</td>
</tr>
<tr>
<td>SL_PREFETCHEVENT_FILLLEVELCHANGE</td>
<td>Prefetch fill level has changed.</td>
</tr>
</tbody>
</table>

9.2.34 SL_PREFETCHSTATUS

#define SL_PREFETCHSTATUS_UNDERFLOW ((SLuint32) 0x00000001)
#define SL_PREFETCHSTATUS_SUFFICIENTDATA ((SLuint32) 0x00000002)
#define SL_PREFETCHSTATUS_OVERFLOW ((SLuint32) 0x00000003)

These values represent the possible status of a player’s prefetching operation:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PREFETCHSTATUS_UNDERFLOW</td>
<td>Playback is suffering due to data starvation.</td>
</tr>
<tr>
<td>SL_PREFETCHSTATUS_SUFFICIENTDATA</td>
<td>Playback is not suffering due to data starvation or spillover.</td>
</tr>
<tr>
<td>SL_PREFETCHSTATUS_OVERFLOW</td>
<td>Playback is suffering due to data spillover.</td>
</tr>
</tbody>
</table>
9.2.35 SL_PRIORITY

Convenient macros representing various different priority levels, for use with the SetPriority method.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PRIORITY_LOWEST</td>
<td>The lowest specifiable priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_VERYLOW</td>
<td>Very low priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_LOW</td>
<td>Low priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_BELOWNORMAL</td>
<td>Below normal priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_NORMAL</td>
<td>Normal priority given to objects.</td>
</tr>
<tr>
<td>SL_PRIORITY_ABOVENORMAL</td>
<td>Above normal priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_HIGH</td>
<td>High priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_VERYHIGH</td>
<td>Very high priority.</td>
</tr>
<tr>
<td>SL_PRIORITY_HIGHEST</td>
<td>Highest specifiable priority.</td>
</tr>
</tbody>
</table>

9.2.36 SL_PROFILES

These macros list the 3 profiles of the OpenSL ES API.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_PROFILES_PHONE</td>
<td>Phone profile of OpenSL ES (see section 2.3 for a detailed description of all three profiles)</td>
</tr>
<tr>
<td>SL_PROFILES_MUSIC</td>
<td>Music profile of OpenSL ES.</td>
</tr>
<tr>
<td>SL_PROFILES_GAME</td>
<td>Game profile of OpenSL ES.</td>
</tr>
</tbody>
</table>
9.2.37 SL_RATECONTROLMODE

#define SL_RATECONTROLMODE_CONSTANTBITRATE ((SLuint32) 0x00000001)
#define SL_RATECONTROLMODE_VARIABLEBITRATE ((SLuint32) 0x00000002)

These defines are used to set the rate control mode.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RATECONTROLMODE_CONSTANTBITRATE</td>
<td>Constant bitrate mode.</td>
</tr>
<tr>
<td>SL_RATECONTROLMODE_VARIABLEBITRATE</td>
<td>Variable bitrate mode.</td>
</tr>
</tbody>
</table>

9.2.38 SL_RATEPROP

#define SL_RATEPROP_RESERVED1 ((SLuint32) 0x00000001)
#define SL_RATEPROP_RESERVED2 ((SLuint32) 0x00000002)
#define SL_RATEPROP_SILENTAUDIO ((SLuint32) 0x00000100)
#define SL_RATEPROP_STAGGEREDAUDIO ((SLuint32) 0x00000200)
#define SL_RATEPROP_NOPITCHCORAUDIO ((SLuint32) 0x00000400)
#define SL_RATEPROP_PITCHCORAUDIO ((SLuint32) 0x00000800)

These values represent the rate-related properties of an object.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RATEPROP_RESERVED1</td>
<td>Reserved.</td>
</tr>
<tr>
<td>SL_RATEPROP_RESERVED2</td>
<td>Reserved.</td>
</tr>
<tr>
<td>SL_RATEPROP_SILENTAUDIO</td>
<td>Silences audio output. This property accommodates limitations of rewind and high speed fast-forward.</td>
</tr>
<tr>
<td>SL_RATEPROP_STAGGEREDAUDIO</td>
<td>Plays small chunks of audio at 1x forward, skipping segments of audio between chunks. The progression of the playback head between chunks obeys the direction and speed implied by the current rate. This property accommodates limitations of rewind and high speed fast forward.</td>
</tr>
<tr>
<td>SL_RATEPROP_NOPITCHCORAUDIO</td>
<td>Plays audio at the current rate, but without pitch correction.</td>
</tr>
<tr>
<td>SL_RATEPROP_PITCHCORAUDIO</td>
<td>Plays audio at the current rate, but with pitch correction.</td>
</tr>
</tbody>
</table>
9.2.39 SL_RECORDEVENT

#define SL_RECORDEVENT_HEADATLIMIT ((SLuint32) 0x00000001)
define SL_RECORDEVENT_HEADATMARKER ((SLuint32) 0x00000002)
define SL_RECORDEVENT_HEADATNEWPOS ((SLuint32) 0x00000004)
define SL_RECORDEVENT_HEADMOVING ((SLuint32) 0x00000008)
define SL_RECORDEVENT_HEADSTALLED ((SLuint32) 0x00000010)
define SL_RECORDEVENT_BUFFER_INSUFFICIENT ((SLuint32) 0x00000020)

These values represent the possible play events.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RECORDEVENT_HEADATLIMIT</td>
<td>Recording head is at the specified duration limit and the recorder has stopped.</td>
</tr>
<tr>
<td>SL_RECORDEVENT_HEADATMARKER</td>
<td>Recording head is at the specified marker position.</td>
</tr>
<tr>
<td>SL_RECORDEVENT_HEADATNEWPOS</td>
<td>Recording head is at a new position. (Period between notifications is specified by application.)</td>
</tr>
<tr>
<td>SL_RECORDEVENT_HEADMOVING</td>
<td>Recording head has begun to move.</td>
</tr>
<tr>
<td>SL_RECORDEVENT_HEADSTALLED</td>
<td>Recording head has temporarily stopped moving.</td>
</tr>
<tr>
<td>SL_RECORDEVENT_BUFFER_INSUFFICIENT</td>
<td>Recording has reached the end of the memory buffer (i.e. SLDATALOCATOR_ADDRESS).</td>
</tr>
</tbody>
</table>

9.2.40 SL_RECORDSTATE

#define SL_RECORDSTATE_STOPPED ((SLuint32) 0x00000001)
define SL_RECORDSTATE_PAUSED ((SLuint32) 0x00000002)
define SL_RECORDSTATE_RECORDING ((SLuint32) 0x00000003)

These values represent the recording state of an object.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RECORDSTATE_STOPPED</td>
<td>Recorder is stopped. The destination is closed</td>
</tr>
<tr>
<td>SL_RECORDSTATE_PAUSED</td>
<td>Recorder is stopped. The destination is open but not receiving captured content.</td>
</tr>
<tr>
<td>SL_RECORDSTATE_RECORDING</td>
<td>Recorder is recording. The destination is open and receiving captured content.</td>
</tr>
</tbody>
</table>
9.2.41 SL_REVERB_PRESET

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_REVERB_PRESET_NONE</td>
<td>No reverb of reflections.</td>
</tr>
<tr>
<td>SL_REVERB_PRESET_SMALLROOM</td>
<td>Reverb preset representing a small room less than five meters in length.</td>
</tr>
<tr>
<td>SL_REVERB_PRESET_MEDIUMROOM</td>
<td>Reverb preset representing a medium room with a length of ten meters or less.</td>
</tr>
<tr>
<td>SL_REVERB_PRESET_LARGEROOM</td>
<td>Reverb preset representing a large-sized room suitable for live performances.</td>
</tr>
<tr>
<td>SL_REVERB_PRESET_MEDIUMHALL</td>
<td>Reverb preset representing a medium-sized hall.</td>
</tr>
<tr>
<td>SL_REVERB_PRESET_LARGEHALL</td>
<td>Reverb preset representing a large-sized hall suitable for a full orchestra.</td>
</tr>
<tr>
<td>SL_REVERB_PRESET_PLATE</td>
<td>Reverb preset representing a synthesis of the traditional plate reverb.</td>
</tr>
</tbody>
</table>

9.2.42 SL_RESULT

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td>((SLuint32) 0x00000000)</td>
</tr>
<tr>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
<td>((SLuint32) 0x00000001)</td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td>((SLuint32) 0x00000002)</td>
</tr>
<tr>
<td>SL_RESULT_MEMORY_FAILURE</td>
<td>((SLuint32) 0x00000003)</td>
</tr>
<tr>
<td>SL_RESULT_RESOURCE_ERROR</td>
<td>((SLuint32) 0x00000004)</td>
</tr>
<tr>
<td>SL_RESULT_RESOURCE_LOST</td>
<td>((SLuint32) 0x00000005)</td>
</tr>
<tr>
<td>SL_RESULT_IO_ERROR</td>
<td>((SLuint32) 0x00000006)</td>
</tr>
<tr>
<td>SL_RESULT_BUFFER_INSUFFICIENT</td>
<td>((SLuint32) 0x00000007)</td>
</tr>
<tr>
<td>SL_RESULT_CONTENT_CORRUPTED</td>
<td>((SLuint32) 0x00000008)</td>
</tr>
<tr>
<td>SL_RESULT_CONTENT_UNSUPPORTED</td>
<td>((SLuint32) 0x00000009)</td>
</tr>
<tr>
<td>SL_RESULT_CONTENT_NOT_FOUND</td>
<td>((SLuint32) 0x0000000A)</td>
</tr>
<tr>
<td>SL_RESULT_PERMISSION_DENIED</td>
<td>((SLuint32) 0x0000000B)</td>
</tr>
<tr>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
<td>((SLuint32) 0x0000000C)</td>
</tr>
<tr>
<td>SL_RESULT_INTERNAL_ERROR</td>
<td>((SLuint32) 0x0000000D)</td>
</tr>
<tr>
<td>SL_RESULT_UNKNOWN_ERROR</td>
<td>((SLuint32) 0x0000000E)</td>
</tr>
<tr>
<td>SL_RESULT_OPERATION_ABORTED</td>
<td>((SLuint32) 0x0000000F)</td>
</tr>
<tr>
<td>SL_RESULT_CONTROL_LOST</td>
<td>((SLuint32) 0x00000010)</td>
</tr>
</tbody>
</table>
The **SL_RESULT** values are described.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_RESULT_SUCCESS</td>
<td>Success.</td>
</tr>
<tr>
<td>SL_RESULT_PRECONDITIONS_VIOLATED</td>
<td>Use of the method violates a pre-condition (not including invalid parameters). The pre-conditions are defined in the method specifications.</td>
</tr>
<tr>
<td>SL_RESULT_PARAMETER_INVALID</td>
<td>An invalid parameter has been detected. In case of parameters passed by pointer (such as the self-parameters) – if the pointer is corrupt, an implementation’s behavior is undefined. However, it is recommended that implementations at least check for NULL-pointers.</td>
</tr>
<tr>
<td>SL_RESULT_MEMORY_FAILURE</td>
<td>The method was unable to allocate or release memory.</td>
</tr>
<tr>
<td>SL_RESULT_RESOURCE_ERROR</td>
<td>Operation failed due to a lack of resources (usually a result of object realization).</td>
</tr>
<tr>
<td>SL_RESULT_RESOURCE_LOST</td>
<td>Operation ignored, since object is in Unrealized or Suspended state.</td>
</tr>
<tr>
<td>SL_RESULT_IO_ERROR</td>
<td>Failure due to an I/O error (file or other I/O device).</td>
</tr>
<tr>
<td>SL_RESULT_BUFFER_INSUFFICIENT</td>
<td>One or more of the buffers passed to the method is too small to service the request.</td>
</tr>
<tr>
<td>SL_RESULT_CONTENT_CORRUPTED</td>
<td>Failure due to corrupted content (also applies for malformed MIDI messages sent programmatically).</td>
</tr>
<tr>
<td>SL_RESULT_CONTENT_UNSUPPORTED</td>
<td>Failure due to an unsupported content format (such as unsupported codec).</td>
</tr>
<tr>
<td>SL_RESULT_CONTENT_NOT_FOUND</td>
<td>Failed to retrieve content (for example, file not found).</td>
</tr>
<tr>
<td>SL_RESULT_PERMISSION_DENIED</td>
<td>Failure due to violation of DRM, user permissions, policies, etc.</td>
</tr>
<tr>
<td>SL_RESULT_FEATURE_UNSUPPORTED</td>
<td>Failure due to an unsupported feature. This occurs when trying to access unsupported extensions.</td>
</tr>
<tr>
<td>SL_RESULT_INTERNAL_ERROR</td>
<td>Failure due to an (unrecoverable) internal error.</td>
</tr>
<tr>
<td>SL_RESULT_UNKNOWN_ERROR</td>
<td>Catch-all error, including system errors. Should never be returned when any of the above errors apply.</td>
</tr>
<tr>
<td>SL_RESULT_OPERATION_ABORTED</td>
<td>Operation was aborted as a result of a user request.</td>
</tr>
</tbody>
</table>
9.2.43 SL_ROLLOFFMODEL

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_ROLLOFFMODEL_EXPONENTIAL</td>
<td>Exponential distance rolloff model.</td>
</tr>
<tr>
<td>SL_ROLLOFFMODEL_LINEAR</td>
<td>Linear distance rolloff model.</td>
</tr>
</tbody>
</table>

These two macros define the two supported distance models: exponential and linear. The exponential distance model most closely models real-life, with an exponential decay due to distance from the listener. The linear distance model offers an alternative rolloff, in which the rate of attenuation is linearly proportional to the distance from the listener.

9.2.44 SL_SAMPLINGRATE

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_SAMPLINGRATE_8</td>
<td>8 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_11_025</td>
<td>11.025 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_12</td>
<td>12 kHz sampling rate.</td>
</tr>
</tbody>
</table>

These macros specify the commonly used sampling rates (in milliHertz) supported by most audio I/O devices.
Value Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_SAMPLINGRATE_16</td>
<td>16 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_22_05</td>
<td>22.05 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_24</td>
<td>24 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_32</td>
<td>32 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_44_1</td>
<td>44.1 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_48</td>
<td>48 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_64</td>
<td>64 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_88_2</td>
<td>88.2 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_96</td>
<td>96 kHz sampling rate.</td>
</tr>
<tr>
<td>SL_SAMPLINGRATE_192</td>
<td>192 kHz sampling rate.</td>
</tr>
</tbody>
</table>

9.2.45 SL_SEEKMODE

```c
#define SL_SEEKMODE_FAST  ((SLuint16) 0x0001)
#define SL_SEEKMODE_ACCURATE ((SLuint16) 0x0002)
```

These values represent seek modes.

The nature of encoded content and of the API implementation may imply tradeoffs between the accuracy and speed of a seek operation. Seek modes afford the application a means to specify which characteristic, accuracy or speed, should be preferred.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_SEEKMODE_FAST</td>
<td>Prefer the speed of a seek over the accuracy of a seek. Upon a SetPosition() call, the implementation minimizes latency potentially at the expense of accuracy; effective playback head position may vary slightly from the requested position</td>
</tr>
<tr>
<td>SL_SEEKMODE_ACCURATE</td>
<td>Prefer the accuracy of a seek over the speed of a seek. Upon a SetPosition() call, the implementation minimizes the distance between the effective playback head position and the requested position, potentially at the price of higher latency.</td>
</tr>
</tbody>
</table>
9.2.46 SL_SPEAKER

#define SL_SPEAKER_FRONT_LEFT ((SLuint32) 0x00000001)
#define SL_SPEAKER_FRONT_RIGHT ((SLuint32) 0x00000002)
#define SL_SPEAKER_FRONT_CENTER ((SLuint32) 0x00000004)
#define SL_SPEAKER_LOW_FREQUENCY ((SLuint32) 0x00000008)
#define SL_SPEAKER_BACK_LEFT ((SLuint32) 0x00000010)
#define SL_SPEAKER_BACK_RIGHT ((SLuint32) 0x00000020)
#define SL_SPEAKER_FRONT_LEFT_OF_CENTER ((SLuint32) 0x00000040)
#define SL_SPEAKER_FRONT_RIGHT_OF_CENTER ((SLuint32) 0x00000080)
#define SL_SPEAKER_BACK_CENTER ((SLuint32) 0x00000100)
#define SL_SPEAKER_SIDE_LEFT ((SLuint32) 0x00000200)
#define SL_SPEAKER_SIDE_RIGHT ((SLuint32) 0x00000400)
#define SL_SPEAKER_TOP_CENTER ((SLuint32) 0x00000800)
#define SL_SPEAKER_TOP_FRONT_LEFT ((SLuint32) 0x00001000)
#define SL_SPEAKER_TOP_FRONT_CENTER ((SLuint32) 0x00002000)
#define SL_SPEAKER_TOP_FRONT_RIGHT ((SLuint32) 0x00004000)
#define SL_SPEAKER_TOP_BACK_LEFT ((SLuint32) 0x00008000)
#define SL_SPEAKER_TOP_BACK_CENTER ((SLuint32) 0x00010000)
#define SL_SPEAKER_TOP_BACK_RIGHT ((SLuint32) 0x00020000)

Speaker location macros used when specifying a channel mask.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_SPEAKER_FRONT_LEFT</td>
<td>Front left speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_FRONT_RIGHT</td>
<td>Front right speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_FRONT_CENTER</td>
<td>Front center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_LOW_FREQUENCY</td>
<td>Low frequency effects (LFE) speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_BACK_LEFT</td>
<td>Rear left speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_BACK_RIGHT</td>
<td>Rear right speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_FRONT_LEFT_OF_CENTER</td>
<td>Front left-of-center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_FRONT_RIGHT_OF_CENTER</td>
<td>Front right-of-center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_BACK_CENTER</td>
<td>Rear-of-center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_SIDE_LEFT</td>
<td>Side left speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_SIDE_RIGHT</td>
<td>Side right speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_CENTER</td>
<td>Top center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_FRONT_LEFT</td>
<td>Top front left speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_FRONT_CENTER</td>
<td>Top front center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_FRONT_RIGHT</td>
<td>Top front right speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_BACK_LEFT</td>
<td>Top rear left speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_BACK_CENTER</td>
<td>Top rear center speaker channel.</td>
</tr>
<tr>
<td>SL_SPEAKER_TOP_BACK_RIGHT</td>
<td>Top rear right speaker channel.</td>
</tr>
</tbody>
</table>
9.2.47 SL_TIME

```
#define SL_TIME_UNKNOWN (SLuint32) 0xFFFFFFFF
```

These values are reserved for special designations of playback time that cannot be represented using the normal numeric range.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_TIME_UNKNOWN</td>
<td>The time is unknown (e.g. duration of content in a broadcast stream)</td>
</tr>
</tbody>
</table>

9.2.48 SL_VOICETYPE

```
#define SL_VOICETYPE_2D_AUDIO  ((SLuint16) 0x0001)
#define SL_VOICETYPE_MIDI     ((SLuint16) 0x0002)
#define SL_VOICETYPE_3D_AUDIO  ((SLuint16) 0x0004)
#define SL_VOICETYPE_3D_MIDIOUTPUT ((SLuint16) 0x0008)
```

These macros list the types of “voices” supported by the system (and not the number of voices of each type).

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_VOICETYPE_2D_AUDIO</td>
<td>2D voices (normal non-3D sampled audio voices). Effectively refers to the mixer inputs supported by the system.</td>
</tr>
<tr>
<td>SL_VOICETYPE_MIDI</td>
<td>MIDI voices. Refers to MIDI polyphony.</td>
</tr>
<tr>
<td>SL_VOICETYPE_3D_AUDIO</td>
<td>3D voices (3D sampled audio).</td>
</tr>
<tr>
<td>SL_VOICETYPE_3D_MIDIOUTPUT</td>
<td>MIDI synthesizer output that can be 3D spatialized.</td>
</tr>
</tbody>
</table>
PART 3: APPENDICES
Appendix A: References

I3DL2 Interactive 3D Audio Rendering Guidelines, Level 2.0, 3D Working Group, Interactive Audio Special Interest Group, MIDI Manufacturers Association, Los Angeles, CA, September 20, 1999.

ISO1000 SI units and recommendations for the use of their multiples and of certain other units, ISO 1000:1990, 2003.

MIDI The Complete MIDI 1.0 Detailed Specification, Document version 96.1, MIDI Manufacturers Association, Los Angeles, CA, USA, 1996 (Contains MIDI 1.0 Detailed Specification, MIDI Time Code, Standard MIDI Files 1.0, General MIDI System Level 1, MIDI Show Control 1.1, and MIDI Machine Control)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUID</td>
<td>Information Technology - Open Systems Interconnection - Procedures for the operation of OSI Registration Authorities: Generation and Registration of Universally Unique Identifiers (UUIDs) and their Use as ASN.1 Object Identifier Components, ITU-T Rec. X.667</td>
</tr>
</tbody>
</table>
Appendix B: Sample Code

The sample code provided in this appendix shows how to use different interfaces. These code fragments are not necessarily complete. See Appendix C: for more complete examples.

B.1 Audio Playback and recording

B.1.1 Buffer Queue

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define SLEEP(x) /* Client system sleep function to sleep x milliseconds 
would replace SLEEP macro */

#define MAX_NUMBER_INTERFACES 3
#define MAX_NUMBER_OUTPUT_DEVICES 6

/* Local storage for Audio data in 16 bit words */
#define AUDIO_DATA_STORAGE_SIZE 4096
/* Audio data buffer size In 16 bit words. 8 data segments are used in 
this simple example */
#define AUDIO_DATA_BUFFER_SIZE 4096/8

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        // Debug printing to be placed here
        exit(1);
    }
}

/* Structure for passing information to callback function */
typedef struct CallbackCntxt_
{
    SLPlayItf  playItf;
    SLint16*   pDataBase;    // Base adress of local audio data storage
    SLint16*   pData;        // Current adress of local audio data storage
    SLuint32   size;
} CallbackCntxt;

/* Local storage for Audio data */
SLint16 pcmData[AUDIO_DATA_STORAGE_SIZE];

/* Callback for Buffer Queue events */
void BufferQueueCallback(
```
SLBufferQueueItf queueItf,
void *pContext)
{
SLresult res;
CallbackCntxt *pCntxt = (CallbackCntxt*)pContext;
if(pCntxt->pData < (pCntxt->pDataBase + pCntxt->size))
{
 res = (*queueItf)->Enqueue(queueItf, (void*) pCntxt->pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 /* Increase data pointer by buffer size */
 pCntxt->pData += AUDIO_DATA_BUFFER_SIZE;
}
}

/* Play some music from a buffer queue */
void TestPlayMusicBufferQueue(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SLint32 numOutputs = 0;
 SLuint32 deviceID = 0;
 SLresult res;
 SLDataSource audioSource;
 SLDataLocator_BufferQueue bufferQueue;
 SLDataFormat_PCM pcm;
 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;
 SLObjectItf player;
 SLPlayItf playItf;
 SLBufferQueueItf bufferQueueItf;
 SLBufferQueueState state;
 SLObjectItf OutputMix;
 SIVolumeItf volumeItf;
 int i;
 SLBoolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Callback context for the buffer queue callback function */
 CallbackCntxt cntxt;

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
 CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */

for (i=0;i<MAX_NUMBER_INTERFACES;i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}

// Set arrays required[] and iidArray[] for VOLUME interface
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_VOLUME;
// Create Output Mix object to be used by player
res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1, iidArray, required); CheckErr(res);

// Realizing the Output Mix object in synchronous mode.
res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE); CheckErr(res);
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void*)&volumeItf); CheckErr(res);

/* Setup the data source structure for the buffer queue */
bufferQueue.locatorType = SL_DATALOCATOR_BUFFERQUEUE;
bufferQueue.numBuffers = 4; /* Four buffers in our buffer queue */

/* Setup the format of the content in the buffer queue */
pcm.formatType = SL_DATAFORMAT_PCM;
pcm.numChannels = 2;
pcm.samplesPerSec = SL_SAMPLINGRATE_44_1;
pcm.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
pcm.containerSize = 16;
pcm.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
pcm.endianness = SL_BYTEORDER_LITTLEENDIAN;

audioSource.pFormat = (void *)&pcm;
audioSource.pLocator = (void *)&bufferQueue;

/* Setup the data sink structure */
locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = OutputMix;
audioSink.pLocator = (void *)&locator_outputmix;
audioSink.pFormat = NULL;

/* Initialize the context for Buffer queue callbacks */
cntxt.pDataBase = (void*)&pcmData;
cntxt.pData = cntxt.pDataBase;
cntxt.size = sizeof(pcmData);

/* Set arrays required[] and iidArray[] for SEEK interface
(PlayItf is implicit) */
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_BUFFERQUEUE;

/* Create the music player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
 &audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get seek and play interfaces */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void*) &playItf); CheckErr(res);
 res = (*player)->GetInterface(player, SL_IID_BUFFERQUEUE,
 (void*) &bufferQueueItf); CheckErr(res);

 /* Setup to receive buffer queue event callbacks */
 res = (*bufferQueueItf)->RegisterCallback(bufferQueueItf,
 BufferQueueCallback, NULL); CheckErr(res);

 /* Before we start set volume to -3dB (-300mB) */
 res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);

 /* Enqueue a few buffers to get the ball rolling */
 res = (*bufferQueueItf)->Enqueue(bufferQueueItf, cntxt.pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 cntxt.pData += AUDIO_DATA_BUFFER_SIZE;

 res = (*bufferQueueItf)->Enqueue(bufferQueueItf, cntxt.pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 cntxt.pData += AUDIO_DATA_BUFFER_SIZE;

 res = (*bufferQueueItf)->Enqueue(bufferQueueItf, cntxt.pData,
 2 * AUDIO_DATA_BUFFER_SIZE); /* Size given in bytes. */
 CheckErr(res);
 cntxt.pData += AUDIO_DATA_BUFFER_SIZE;

 /* Play the PCM samples using a buffer queue */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);

 /* Wait until the PCM data is done playing, the buffer queue callback
 will continue to queue buffers until the entire PCM data has been
 played. This is indicated by waiting for the count member of the
 SLBufferQueueState to go to zero. */
 res = (*bufferQueueItf)->GetState(bufferQueueItf, &state);
 CheckErr(res);

 while(state.count)
 { (*bufferQueueItf)->GetState(bufferQueueItf, &state);
 }
/* Make sure player is stopped */
res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
CheckErr(res);
/* Destroy the player */
(*player)->Destroy(player);
/* Destroy Output Mix object */
(*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

 SLEngineOption EngineOption[] = {
 (SLuint32) SL_ENGINEOPTION_THREADSAFE,
 (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
 CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestPlayMusicBufferQueue(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}

B.1.2 Recording

Audio recorder example.

#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 5
#define MAX_NUMBER_INPUT_DEVICES 3
#define POSITION_UPDATE_PERIOD 1000 /* 1 sec */

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

void RecordEventCallback(SLRecordItf caller,
 void *pContext,
void TestAudioRecording(SLObjectItf sl)
{
 SLObjectItf recorder;
 SLRecordItf recordItf;
 SLEngineItf EngineItf;
 SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
 SLAudioInputDescriptor AudioInputDescriptor;
 SLresult res;
 SLDataSource audioSource;
 SLDataLocator_IODevice locator_mic;
 SLDeviceVolumeItf devicevolumeItf;
 SLDataSink audioSink;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;
 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 SLuint32 InputDeviceIDs[MAX_NUMBER_INPUT_DEVICES];
 SLint32 numInputs = 0;
 SLboolean mic_available = SL_BOOLEAN_FALSE;
 SLuint32 mic_deviceID = 0;

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
 CheckErr(res);

 /* Get the Audio IO DEVICE CAPABILITIES interface, which is also implicit */
 res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES,
 (void*)&AudioIODeviceCapabilitiesItf);
 CheckErr(res);
 numInputs = MAX_NUMBER_INPUT_DEVICES;

 res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioInputs(
 AudioIODeviceCapabilitiesItf, &numInputs, InputDeviceIDs);
 CheckErr(res);

 /* Search for either earpiece microphone or headset microphone input device - with a preference for the latter */
 for (i=0; i<numInputs; i++)
 {
res = (*AudioIODeviceCapabilitiesItf)-
>QueryAudioInputCapabilities(AudioIODeviceCapabilitiesItf,
InputDeviceIDs[i], &AudioInputDescriptor); CheckErr(res);
if((AudioInputDescriptor.deviceConnection ==
 SL_DEVCONNECTION_ATTACHED_WIRED) &&
 (AudioInputDescriptor.deviceScope == SL_DEVSCOPE_USER) &&
 (AudioInputDescriptor.deviceLocation ==
 SL_DEVLOCATION_HEADSET))
{
 mic_deviceID = InputDeviceIDs[i];
 mic_available = SL_BOOLEAN_TRUE;
 break;
}
else if((AudioInputDescriptor.deviceConnection ==
 SL_DEVCONNECTION_INTEGRATED) &&
 (AudioInputDescriptor.deviceScope ==
 SL_DEVSCOPE_USER) &&
 (AudioInputDescriptor.deviceLocation ==
 SL_DEVLOCATION_HANDSET))
{
 mic_deviceID = InputDeviceIDs[i];
 mic_available = SL_BOOLEAN_TRUE;
 break;
}
/* If neither of the preferred input audio devices is available, no
point in continuing */
if (!mic_available) {
 /* Appropriate error message here */
 exit(1);
}
/* Initialize arrays required[] and iidArray[] */
for (i=0;i<MAX_NUMBER_INTERFACES;i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}
/* Get the optional DEVICE VOLUME interface from the engine */
res = (*sl)->GetInterface(sl, SL_IID_DEVICEVOLUME,
(void*)&devicevolumeItf); CheckErr(res);
/* Set recording volume of the microphone to -3 dB */
res = (*devicevolumeItf)->SetVolume(devicevolumeItf, mic_deviceID, -300); CheckErr(res);
/* Setup the data source structure */
locator_mic.locatorType = SL_DATALOCATOR_IODEVICE;
locator_mic.deviceType = SL_IODEVICE_AUDIOINPUT;
locator_mic.deviceID = mic_deviceID;
locator_mic.device = NULL;
audioSource.pLocator = (void *)&locator_mic;
audioSource.pFormat = NULL;

/* Setup the data sink structure */
uri.locatorType = SL_DATALOCATOR_URI;
uri.URI = (SLchar *) "file:///recordsample.wav";
mime.formatType = SL_DATAFORMAT_MIME;
mime.mimeType = (SLchar *) "audio/x-wav";
mime.containerType = SL_CONTAINERTYPE_WAV;
audioSink.pLocator = (void *)&uri;
audioSink.pFormat = (void *)&mime;

/* Create audio recorder */
res = (*EngineItf)->CreateAudioRecorder(EngineItf, &recorder, &audioSource, &audioSink, 0, iidArray, required); CheckErr(res);

/* Realizing the recorder in synchronous mode. */
res = (*recorder)->Realize(recorder, SL_BOOLEAN_FALSE); CheckErr(res);

/* Get the RECORD interface - it is an implicit interface */
res = (*recorder)->GetInterface(recorder, SL_IID_RECORD, (void*)&recordItf); CheckErr(res);

/* Setup to receive position event callbacks */
res = (*recordItf)->RegisterCallback(recordItf, RecordEventCallback, NULL);
CheckErr(res);

/* Set notifications to occur after every second - may be useful in updating a recording progress bar */
res = (*recordItf)->SetPositionUpdatePeriod(recordItf, POSITION_UPDATE_PERIOD); CheckErr(res);
res = (*recordItf)->SetCallbackEventsMask(recordItf, SL_RECORDEVENT_HEADATNEWPOS); CheckErr(res);

/* Set the duration of the recording - 30 seconds (30,000 milliseconds) */
res = (*recordItf)->SetDurationLimit(recordItf, 30000); CheckErr(res);

/* Record the audio */
res = (*recordItf)->SetRecordState(recordItf,SL_RECORDSTATE_RECORDING);

/* Destroy the recorder object */
(*recorder)->Destroy(recorder);
}

int sl_main(void)
{
 SLresult res;
 SLOBJECTITF sl;
/* Create OpenSL ES engine in thread-safe mode */
SLEngineOption EngineOption[] = {
 (SLuint32) SL_ENGINEOPTION_THREADSAFE,
 (SLuint32) SL_BOOLEAN_TRUE
};

res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);

/* Realizing the SL Engine in synchronous mode. */
res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
TestAudioRecording(sl);
/* Shutdown OpenSL ES */
(*sl)->Destroy(sl);
exit(0);
}

B.2 Dynamic Interface Management

/* Example callback for dynamic interface management events. */
* See section 3.3 in the specification for information on *
* what operations are allowed in callbacks. *
* The following example consists of pseudo code and is not *
* intended to be compiled. It is provided as a starting *
* point for developing compilable code. */

void DIMCallback(SLDynamicInterfaceManagementItf caller,
 void *pContext,
 SLuint32 event,
 SLresult result,
 const SLInterfaceId iid)
{
 if (event == SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION) {
 if ((iid == SL_IID_PRESETREVERB)) {
 asyncRes = result;
 sem_post(&semDIM);
 }
 } else {
 event_post(eventQueue, {caller, pContext, event, result, iid});
 }
}

/* Example main event loop thread for handling DIM events */
void eventThread()
{
 SLresult res;
 while(...) /* Event loop */
 {
 event = event_read(eventQueue);
 switch(event.event) {
 case SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST:
 if ((event.iid == SL_IID_PRESETREVERB)) {
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 }
 }
 }
}
case SL_DYNAMIC_ITF_EVENT_RESOURCES_LOST_PERMANENTLY:
 if ((event.iid == SL_IID_PRESETREVERB)) {
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 /* Dynamically remove the PresetReverb interface from the
 * Output Mix object since this instance will not be
 * useful anymore. */
 res = (*(event.caller))->RemoveInterface(event.caller, SL_IID_PRESETREVERB); CheckErr(res);
 presetReverbIsRealized = SL_BOOLEAN_FALSE;
 }
 break;

case SL_DYNAMIC_ITF_EVENT_RESOURCES_AVAILABLE:
 if ((event.iid == SL_IID_PRESETREVERB) && (presetReverbIsRealized)) {
 /* Dynamically resume the PresetReverb interface
 on the Output Mix object */
 res = (*(event.caller))->ResumeInterface(event.caller, SL_IID_PRESETREVERB); CheckErr(res);
 /* Wait until asynchronous call terminates */
 sem_wait(&semDIM);
 if (asyncRes == SL_RESULT_SUCCESS) {
 /* We got the resource */
 presetReverbHasResources = SL_BOOLEAN_TRUE;
 } else {
 /* Some other interface beat us to claiming the available
 resource, lets wait for a new event */
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 }
 }
 break;
 default:
 break;
}

/* Example program using dynamic interface management interface. */
int sl_main()
{
 SLDynamicInterfaceManagementItf dynamicInterfaceManagementItf;
 /* ... */
 Start event thread
 Create Output Mix object to be used by player */
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1, iidArray, required); CheckErr(res);
 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
 CheckErr(res);
 /* Get the Dynamic Interface Management interface for the
 Output Mix object */
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_DYNAMICINTERFACEMANAGEMENT, (void*)&dynamicInterfaceManagementItf); CheckErr(res);
/* Register DIM callback */
res = (*dynamicInterfaceManagementItf)->
 RegisterCallback(dynamicInterfaceManagementItf, DIMCallback, NULL); CheckErr(res);
while(...) /* main action loop */
{
 switch(action) {
 case 'AddReverb':
 /* Add reverb if not already present and there are sufficient resources. */
 if (!presetReverbIsRealized) {
 /* We should stop playback first to increase chances of success.
 Dynamically add the PresetReverb interface to the Output Mix object */
 res = (*dynamicInterfaceManagementItf)->
 AddInterface(dynamicInterfaceManagementItf, SL_IID_PRESETREVERB); CheckErr(res);
 /* Wait until asynchronous call terminates */
 sem_wait(&semDIM);
 if (asyncRes == SL_RESULT_SUCCESS) {
 presetReverbHasResources = SL_BOOLEAN_TRUE;
 presetReverbIsRealized = SL_BOOLEAN_TRUE;
 /* Get PresetReverb interface */
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_PRESETREVERB, (void*)&PresetReverbItf);
 CheckErr(res);
 /* Setup PresetReverb for LARGE HALL */
 res = (*PresetReverbItf)->SetPreset(PresetReverbItf, SL_REVERBPRESET_LARGEHALL); CheckErr(res);
 } else if(asyncRes == SL_RESULT_RESOURCE_ERROR){
 /* Did not get resources now, will get callback when resources are available */
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 presetReverbIsRealized = SL_BOOLEAN_TRUE;
 } else {
 /* Did NOT successfully add presetReverb to the output mix object */
 presetReverbHasResources = SL_BOOLEAN_FALSE;
 presetReverbIsRealized = SL_BOOLEAN_FALSE;
 }
 /* Start playback again. */
 }
 break;
 case 'RemoveReverb':
 /* Remove the Preset Reverb if present. */
 if (presetReverbIsRealized) {
 /* Dynamically remove the PresetReverb interface from the Output Mix object */
 presetReverbIsRealized = SL_BOOLEAN_FALSE;
 }
presetReverbHasResources = SL_BOOLEAN_FALSE;
res = (*dynamicInterfaceManagementItf)->
 RemoveInterface(dynamicInterfaceManagementItf,
 SL_IID_PRESETREVERB); CheckErr(res);
} break;
}
B.3 MIDI

B.3.1 Simple MIDI

Tests the basic load of a MIDI file from a standard locator.

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        // Debug printing to be placed here
        exit(1);
    }
}

void TestMIDISimple( SLEngineItf eng, SLObjectItf outputMix )
{
    SLresult          res;
    SLDataSource      fileSrc;
    SLDataSource      bankSrc;
    SLDataSink        audOutSnk;
    SLObjectItf       player;
    SLmillisecond     dur;
    SLmillisecond     pos;
    SLPutItf          playItf;

    SLDataLocator_URI       fileLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file:///foo.mid" ];
    SLDataFormat_MIME       fileFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/x-midi", SL_CONTAINERTYPE_SMF ];
    SLDatalocator_URI       bankLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file:///foo.dls" ];
    SLDataFormat_MIME       bankFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/dls", SL_CONTAINERTYPE_MOBILE_DLS ];
    SLDatalocator_OutputMix audOutLoc;

    const SLboolean       required[2] = {SL_BOOLEAN_TRUE,
SL_BOOLEAN_FALSE};
    const SLInterfaceID   iidArray[2] = {SL_IID_PLAY, SL_IID_VOLUME};

    res = (*eng)->CreateOutputMix(eng, &outputMix, 1, &iidArray[1],
&required[1]); CheckErr(res);

    res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);

    fileSrc.pFormat = &fileFmt;
    fileSrc.pLocator = &fileLoc;
```
bankSrc.pFormat = &bankFmt;
bankSrc.pLocator = &bankLoc;
audOutLoc.locatorType = SL_DATALOCATOR_OUTPUTMIX;
audOutLoc.outputMix = outputMix;
audOutSnk.pFormat = NULL;
audOutSnk.pLocator = &audOutLoc;
res = (*eng)->CreateMidiPlayer(eng, &player, &fileSrc, &bankSrc,
&audOutSnk, NULL, NULL, 1, iidArray, required); CheckErr(res);
res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

/* Get the play interface, which was implicitly created on the
MIDI player creation. */
res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);
res = (*playItf)->GetDuration(playItf, &dur); CheckErr(res);
res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
do {
 res = (*playItf)->GetPosition(playItf, &pos); CheckErr(res);
} while (pos < dur);

/* Destroy player */
(*player)->Destroy(player);

B.3.2 MIDI Buffer Queue

Tests the MIDI buffer queue. This is in an OpenSL ES game context.

#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

void *queueData[8] = { (void *) 0x123, (void *) 0x234, (void *) 0x345,
(void *) 0x456, (void *) 0x567, (void *) 0x678, (void *) 0x789 }
SLuint32 index = 0;

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

void TestQueueCallback(SLBufferQueueItf caller, void *pContext)
{
 SLBufferQueueItf queueItf = (SLBufferQueueItf) pContext;

SLresult res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024); CheckErr(res);
index &= 0x7; /* force the queues to cycle */
}

void TestMIDIBufferQueue(SLEngineItf eng, SLOutputMixItf outputMix)
{
 SLresult res;
 SLDataSource midSrc;
 SLDataSource bnkSrc;
 SLDataSink audOutSnk;
 SLOutputMixItf player;
 SLPauseItf playItf;
 SLPauseBufferQueueItf queueItf;

 SLDataLocator_MIDIBufferQueue midLoc;
 SLDataFormat_MIME midFmt;
 SLDataLocator_URI bankLoc;
 SLDataFormat_MIME bankFmt;
 SLDataLocator_OutputMix audOutLoc;

 const SLboolean required[3] = { SL_BOOLEAN_TRUE,
SL_BOOLEAN_TRUE ,SL_BOOLEAN_FALSE};
 const SLInterfaceID iidArray[3] = { SL_IID_PLAY,
SL_IID_BUFFERQUEUE ,SL_IID_VOLUME};

 res = (*eng)->CreateOutputMix(eng, &outputMix, 1, &iidArray[2],
&required[2]); CheckErr(res);
 res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);
 CheckErr(res);

 /* Set up the MIDI buffer queue data source */
 midLoc.locatorType = SL_DATALOCATOR_MIDIBUFFERQUEUE;
 midLoc.tpqn = 96;
 midLoc.numBuffers = 3;
 midSrc.pLocator = &midLoc;
 midFmt.formatType = SL_DATAFORMAT_MIME;
 midFmt.mimeType = (SLchar *) "audio/sp-midi";
 midFmt.containerType = SL_CONTAINERTYPE_SMF;
 midSrc.pFormat = &midFmt;

 /* Set up the bank data source */
 bankLoc.locatorType = SL_DATALOCATOR_URI;
 bankLoc.URI = (SLLchar "file:///foo.dls";
 bankFmt.formatType = SL_DATAFORMAT_MIME;
 bankFmt.mimeType = (SLchar *) "audio/dls";
 bankFmt.containerType = SL_CONTAINERTYPE_MOBILE_DLS;
 bnkSrc.pFormat = &bankFmt;
 bnkSrc.pLocator = &bankLoc;

 /* Set up the audio output data sink */
 audOutLoc.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 audOutLoc.outputMix = outputMix;
 audOutSnk.pFormat = NULL;
 audOutSnk.pLocator = &audOutLoc;
/* Prepare and play the player */
res = (*eng)->CreateMidiPlayer(eng, &player, &midSrc, &bnkSrc,
&audOutSnk, NULL, NULL, 2, iidArray, required); CheckErr(res);
res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_BUFFERQUEUE, (void
*)&queueItf); CheckErr(res);
res = (*queueItf)->RegisterCallback(queueItf, TestQueueCallback,
(void *)&queueItf); CheckErr(res);

/* Enqueue three buffers */
res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024);
CheckErr(res);
res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024);
CheckErr(res);
res = (*queueItf)->Enqueue(queueItf, queueData[index++], 1024);
CheckErr(res);

res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
{
SLuint32 state = SL_PLAYSTATE_PLAYING;
while(state == SL_PLAYSTATE_PLAYING)
{
 res = (*playItf)->GetPlayState(playItf, &state);
 CheckErr(res);
}
/* Destroy player */
(*player)->Destroy(player);
Advanced MIDI: MIDI messaging

Tests advanced features of the MIDI interfaces. This is in an OpenSL ES game context.

```c
#include <stdio.h>
#include <memory.h>
#include <stdlib.h>
#include "OpenSLES.h"

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
  if ( res != SL_RESULT_SUCCESS )
  {
    // Debug printing to be placed here
    exit(1);
  }
}

void TestMetaEventCallback(SLMIDIMessageItf caller, void *pContext,
SLuint8 type, SLuint32 len, const SLuint8 *data, SLuint32 tick, SLuint16
track)
{
  if (pContext == (void *) 0x234 && *data++ == 0x02) /* check if it's a
  copyright metadata item */
  {
    char str[256];
    SLuint8 stringLen = *data++;
    assert(stringLen == len - 2);
    memcpy(str, data, stringLen);
    printf("Copyright: %s from track %d at tick %d", str, track,
    tick);
  }
}

void TestMIDIMessageCallback(SLMIDIMessageItf caller, void *pContext,
SLuint8 statusByte, SLuint32 length, const SLuint8 *data, SLuint32 tick,
SLuint16 track)
{
  if (pContext == (void *) 0x567 && statusByte >> 4 == 0xB)
  {
    if (statusByte >> 4 == 0xB)
    {
      printf("MIDI control change encountered at tick %d.
      Channel %d; controller %d, value %d\n", tick, statusByte & 0xF0,
      data[0], data[1]);
    }
    else if (statusByte >> 4 == 0xC)
    {
      printf("Program change encountered at tick %d. Channel %d;
      program %d\n", tick, statusByte & 0xF0, data[0]);
    }
  }
```
else
{
 printf("Error: unspecified MIDI event encountered in
TestMIDIMessageCallback\n");
}
}

*/

void TestMIDIAdvanced(SLEngineItf eng, SLObjectItf outputMix)
{
 SLresult res;
 SLDataSource file;
 SLDataSource bank;
 SLDataSink audOutSnk;
 SLObjectItf player;
 SLuint32 dur; /* duration in ticks */
 SLuint16 tracks;
 const SLboolean required[7] = { SL_BOOLEAN_TRUE,
SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE,
SL_BOOLEAN_TRUE,SL_BOOLEAN_FALSE};
 const SLInterfaceID iidArray[7] = { SL_IID_PLAY, SL_IID_SEEK,
SL_IID_MIDIMESSENGE, SL_IID_MIDIMUTESOLO, SL_IID_MIDITEMPO,
SL_IID_MIDIỆIME, SL_IID_VOLUIME};
 SLPlayItf playItf;
 SLSeekItf seekItf;
 SLMIDIMessageItf midMsgItf;
 SLMIDIMuteSoloItf midMuteSoloItf;
 SLMIDITempoItf midTempoItf;
 SLMDITimeItf midTimeItf;
 SLDataLocator_OutputMix audOutLoc;

 SLDataLocator_URI fileLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file://foo.mid"};
 SLDataFormat_MIME fileFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/x-midi", SL_CONTAINERTYPE_SMF };
 SLDataLocator_URI bankLoc = { SL_DATALOCATOR_URI, (SLchar *)
"file://foo.dls"};
 SLDataFormat_MIME bankFmt = { SL_DATAFORMAT_MIME, (SLchar *)
"audio/dls", SL_CONTAINERTYPE_MOBILE_DLS };;
 res = (*eng)->CreateOutputMix(eng, &outputMix, 1, &iidArray[6],
(required)); CheckErr(res);
 res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);
 CheckErr(res);

 file.pFormat = &fileFmt;
 file.pLocator = &fileLoc;
 bank.pFormat = &bankFmt;
 bank.pLocator = &bankLoc;
 audOutLoc.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 audOutLoc.outputMix = outputMix;
 audOutSnk.pFormat = NULL;
 audOutSnk.pLocator = &audOutLoc;
res = (*eng)->CreateMidiPlayer(eng, &player, &file, &bank, &audOutSnk, NULL, NULL, 6, iidArray, required); CheckErr(res);
res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);
res = (*player)->GetInterface(player, iidArray[0], (void *)&playItf); CheckErr(res);
res = (*player)->GetInterface(player, iidArray[1], (void *)__)&seekItf); CheckErr(res);
res = (*player)->GetInterface(player, iidArray[2], (void *)__)&midMsgItf); CheckErr(res);
res = (*player)->GetInterface(player, iidArray[3], (void *)__)&midMuteSoloItf); CheckErr(res);
res = (*player)->GetInterface(player, iidArray[4], (void *)__)&midTempoItf); CheckErr(res);
res = (*player)->GetInterface(player, iidArray[5], (void *)__)&midTimeItf); CheckErr(res);

/* Set tempo to 140 BPM */
res = (*midTempoItf)->SetMicrosecondsPerQuarterNote(midTempoItf, 428571); CheckErr(res);
{
/* Set channel volume on channel 3 to 96 */
SLuint8 msg[3] = { 0xB0 | 0x02, 0x07, 0x60 };
res = (*midMsgItf)->SendMessage(midMsgItf, msg, 3); CheckErr(res);
}
{
/* Set pitch bend sensitivity on channel 1 to +/- 1 semitone */
SLuint8 msg[12] = { 0xB0 | 0x02, 0x07, 0x60,
 0xB0 | 0x00, 0x65, 0x00, /* RPN ID MSB (controller 101, data 0) */
 0xB0 | 0x00, 0x64, 0x00, /* RPN ID LSB (controller 100, data 0) */
 0xB0 | 0x00, 0x06, 0x01, /* RPN data MSB (controller 6, data 1) */
 0xB0 | 0x00, 0x26, 0x00 }; /* RPN data LSB (controller 38, data 0) */
res = (*midMsgItf)->SendMessage(midMsgItf, msg, 12); CheckErr(res);
}
/* Set/enable looping for arbitrary tick values (assume end <
duration) */
res = (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0, 100); CheckErr(res);
/* Override loop points using MIDI tick precision */
res = (*midTimeItf)->SetLoopPoints(midTimeItf, 1000, 6000); CheckErr(res);
/* Set a meta-event callback for the function TestMetaEventCallback */
res = (*midMsgItf)->RegisterMetaEventCallback(midMsgItf, TestMetaEventCallback, (void*) 0x234); CheckErr(res);
/* Set a MIDI event callback for the function TestMIDIMessageCallback */
res = (*midMsgItf)->RegisterMIDIMessageCallback(midMsgItf, TestMIDIMessageCallback, (void *) 0x456); CheckErr(res);
res = (*midMsgItf)->AddMIDIMessageCallbackFilter(midMsgItf, SL_MIDIMESSAGETYPE_CONTROL_CHANGE); CheckErr(res);
res = (*midMsgItf)->AddMIDIMessageCallbackFilter(midMsgItf, SL_MIDIMESSAGETYPE_PROGRAM_CHANGE); CheckErr(res);

 /* Mute track 3 */
 res = (*midMuteSoloItf)->GetTrackCount(midMuteSoloItf, &tracks); CheckErr(res);
 if (tracks > 2)
 res = (*midMuteSoloItf)->SetTrackMute(midMuteSoloItf, 2, SL_BOOLEAN_TRUE); CheckErr(res);

 /* Get duration of the MIDI file in milliseconds */
 res = (*midTimeItf)->GetDuration(midTimeItf, &dur); CheckErr(res);

 /* Play half the MIDI data (tick duration / 2) */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);
 {
 SLuint32 state;
 SLuint32 tickPos;
 do
 { SLEEP(100); /* sleep 100 ms */
 res = (*playItf)->GetPlayState(playItf, &state);
 CheckErr(res);
 res = (*midTimeItf)->GetPosition(midTimeItf, &tickPos);
 CheckErr(res);
 } while(tickPos < dur / 2 && state == SL_PLAYSTATE_PLAYING);
 }

 /* Destroy interfaces and player */
 (*player)->Destroy(player);
B.4 Metadata Extraction

B.4.1 Simple Metadata Extraction

Tests the basic features of metadata extraction.

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        /* Debug printing to be placed here */
        exit(1);
    }
}

/* Prints all ASCII metadata key-value pairs (from the root
* of the media since MetadataTraversalItf is not used) */
void TestMetadataSimple(SLMetadataExtractionItf mdExtrItf)
{
    SLresult          res;
    SLuint32            mdCount   = 0;
    SLuint32            i;

    /* scan through the metadata items */
    res = (*mdExtrItf)->GetItemCount(mdExtrItf, &mdCount); CheckErr(res);
    for (i = 0; i < mdCount; ++i)
    {
        SLMetadataInfo *key = NULL;
        SLMetadataInfo *value = NULL;
        SLuint32 itemSize = 0;

        /* get the size of and malloc memory for the metadata item */
        res = (*mdExtrItf)->GetKeySize(mdExtrItf, i, &itemSize);
        CheckErr(res);
        key = malloc(itemSize);
        if (key) /* no malloc error */
        {
            /* extract the key into the memory */
            res = (*mdExtrItf)->GetKey(mdExtrItf, i, itemSize, key);
            CheckErr(res);
            if (key->encoding == SL_CHARACTERENCODING_ASCII)
            {  
```
res = (*mdExtrItf)->GetValueSize(mdExtrItf, i, &itemSize);
CheckErr(res);
value = malloc(itemSize);
if (value) /* no malloc error */
{
 /* extract the value into the memory */
 res = (*mdExtrItf)->GetValue(mdExtrItf, i, itemSize, value); CheckErr(res);
 if (value->encoding == SL_CHARACTERENCODING_ASCII)
 {
 printf("Item %d key: %s, value %s", i, key->data, value->data);
 }
 free(value);
}
free(key);
}
B.5 3D Audio

B.5.1 Simple 3D

An example showing how to create 3D source and spin it around the listener.

```c
#include <stdio.h>
#include <stdlib.h>
/* Floating point routines sinf and cosf used in example - could be
replaced by fixed point code. */
#include <math.h>

#include "OpenSLES.h"

#define SLEEP(x)        // Client system sleep function to sleep x
milliseconds would replace SLEEP macro

#define MAX_NUMBER_INTERFACES 2
#define CIRCLE_RADIUS  1000 /* 1.0 meters */
/* we move the source by this angle (in radians) at each step */
#define CIRCLE_STEP  (float) ( TWOPI / 180.0 / 2.0 )
#define PI   3.1415926535f
#define TWOPI  ( 2.0f * PI )

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        // Debug printing to be placed here
        exit(1);
    }
}

/* Play create a 3D source and spin it around the listener */
void TestSimple3D( SLObjectItf sl )
{
    SLEngineItf             EngineItf;
    SLresult                res;
    SLDataSource            audioSource;
    SLDataLocator_URI       uri;
    SLDataFormat_MIME       mime;
```
```c
SLDataSink    audioSink;
SLDataLocator_OutputMix locator_outputmix;

SLObjectItf    player;
SLPlayItf       playItf;
SL3DLocationItf locationItf;

SLObjectItf    listener;

SLObjectItf    OutputMix;

int i;

SLBoolean required[MAX_NUMBER_INTERFACES];
SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

/* Get the SL Engine Interface which is implicit */
res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
CheckErr(res);

/* Initialize arrays required[] and iidArray[] */
for (i=0;i<MAX_NUMBER_INTERFACES;i++)
{
    required[i] = SL_BOOLEAN_FALSE;
    iidArray[i] = SL_IID_NULL;
}

/* Create Output Mix object to be used by player - no interfaces
required */
res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 0,
iidArray, required); CheckErr(res);

/* Realizing the Output Mix object in synchronous mode. */
res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

/* Create 3D listener - no interfaces requires as the listener will
remain stationary */
res = (*EngineItf)->CreateListener(EngineItf, &listener, 0, iidArray,
required); CheckErr(res);

/* Realizing the listener object in synchronous mode. */
res = (*listener)->Realize(listener, SL_BOOLEAN_FALSE); CheckErr(res);

/* Setup the data source structure for the player */
uri.locatorType   = SL_DATALOCATOR_URI;
uri.URI           = (SLchar *) "file:///buzzingbee.wav";
mime.formatType   = SL_DATAFORMAT_MIME;
mime.mimeType     = (SLchar *) "audio/x-wav";
mime.containerType = SL_CONTAINERTYPE_WAV;

audioSource.pLocator  = (void *)&uri;
audioSource.pFormat    = (void *)&mime;
```
/* Setup the data sink structure */
locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = OutputMix;
audioSink.pLocator = (void *)&locator_outputmix;
audioSink.pFormat = NULL;

/* Set arrays required[] and iidArray[] for 3DLocationItf interface
(PlayItf is implicit) */
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_3DLOCATION;

/* Create the 3D player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
 &audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

/* Realizing the player in synchronous mode. */
res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

/* Get the play and 3D location interfaces */
res = (*player)->GetInterface(player, SL_IID_PLAY, (void*)&playItf);
 CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_3DLOCATION,
 (void*)&locationItf); CheckErr(res);
{
 SLVec3D coords;
 SLuint32 playState;

 float angle = 0.0f;

 /* Position the 3D source in front the listener */
 coords.x = (SLuint32)(CIRCLE_RADIUS * sinf(angle));
 coords.y = 0;
 coords.z = (SLuint32)(CIRCLE_RADIUS * cosf(angle));
 (*locationItf)->SetLocationCartesian(locationItf, &coords);
 CheckErr(res);

 /* Start playing the 3D source (buzzing bee) */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);
 do
 {
 angle += CIRCLE_STEP;
 if(angle >= TWOPI)
 {
 angle = 0.0f;
 }
 }

 /* move source in horizontal circle (clockwise direction) */
 coords.x = (SLuint32)(CIRCLE_RADIUS * sinf(angle));
 coords.z = (SLuint32)(CIRCLE_RADIUS * cosf(angle));
B.5.2 Advanced 3D

Simple 3D game showing use of priorities and advanced 3D properties.

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define SLEEP(x) /* Client system sleep function to sleep x milliseconds would replace SLEEP macro */

/* External game engine data */
#define EVENT_GUNSHOT (int)0x00000001
#define EVENT_DEATH (int)0x00000002
#define EVENT_FOOTSTEP (int)0x00000003
#define OBJECT_LISTENER (int)0x00000001
```
#define OBJECT_GUNSHOT (int)0x00000002
#define OBJECT_SCREAM (int)0x00000003

/* External game engine functions */
extern int GAMEGetEvents(void);
extern void GAMEGetLocation(int object, int *x, int *y, int *z);

/***/
#define MAX_NUMBER_INTERFACES 4

/* Checks for error. If any errors exit the application! */
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

void Create3DSource(SLEngineItf EngineItf, SLObjectItf OutputMix,
SLObjectItf *pPlayer, SLchar *fileName, SLuint32 priority)
{
 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;
 SLDataSink audioSink;
 SLDataSource Locator_OutputMix locator_outputmix;
 SLresult res;
 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Setup the data source structure for the player */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = fileName;
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *) "audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;
 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for 3DLocationItf,*/
3DSourceItf, 3DDopplerItf, SeekItf interfaces (PlayItf is implicit).
Not all interfaces are used by all players in this example — in a real application it is advisable to only request interfaces that are necessary. */
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_3DLOCATION;
required[1] = SL_BOOLEAN_TRUE;
iidArray[1] = SL_IID_3DSOURCE;
required[2] = SL_BOOLEAN_FALSE; /* Create the player even if Doppler unavailable */
iidArray[2] = SL_IID_3DDOPPLER;
iidArray[3] = SL_IID_SEEK;
required[3] = SL_BOOLEAN_TRUE;

/* Create the 3D player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, pPlayer,
&audioSource, &audioSink, 4, iidArray, required); CheckErr(res);
{
 SLObjectItf player = *pPlayer;

 /* Set player's priority */
 res = (*player)->SetPriority(player, priority, SL_BOOLEAN_TRUE);
 CheckErr(res);

 /* Realize the player in synchronously */
 res = (*player)->Realize(player, SL_BOOLEAN_TRUE);
 if (res == SL_RESULT_RESOURCE_ERROR)
 {
 /* Ignore resource errors, they're handled elsewhere. */
 }
 else
 {
 CheckErr(res);
 }
}

/* Play create a 3D source and spin it around the listener */
void TestAdvanced3D(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SL3DCommitItf commitItf;

 SLresult res;
 SLObjectItf gunshot, scream, footstep, torch;
 SLPlayItf playItf;
 SL3DLocationItf locationItf;
 SL3DSourceItf sourceItf;
 SL3DDopplerItf dopplerItf;

SLObjectItf listener;
SLObjectItf OutputMix;

SLboolean required[MAX_NUMBER_INTERFACES];
SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

SLuint32 state;
int i;

/* Get the SL Engine Interface which is implicit */
res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void*)&EngineItf);
CheckErr(res);

/* Initialize arrays required[] and iidArray[] */
for (i=0;i<MAX_NUMBER_INTERFACES;i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}

/* Get the commit interface and for efficiency reasons set into
deferred mode. */
res = (*sl)->GetInterface(sl, SL_IID_3DCOMMIT, (void*)&commitItf);
CheckErr(res);
(*commitItf)->SetDeferred(commitItf, SL_BOOLEAN_TRUE);

/* Create Output Mix object to be used by player - no interfaces
required */
res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 0,
 iidArray, required); CheckErr(res);

/* Realizing the Output Mix object in synchronous mode. */
res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

/* Create 3D listener. */
required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
res = (*EngineItf)->CreateListener(EngineItf, &listener, 1, iidArray,
 required); CheckErr(res);

/* Realizing the listener object in synchronous mode. */
res = (*listener)->Realize(listener, SL_BOOLEAN_FALSE); CheckErr(res);

/* Create four players with differing priorities. Higher priorities
are used for sound effects that must be heard by the game player,
whereas lower priorities are assigned to sound effects that make
the game sound better but are not required to appreciate
the game. */
Create3DSource(EngineItf, OutputMix, &gunshot, "gunshot.wav",
 SL_PRIORITY_HIGH);
Create3DSource(EngineItf, OutputMix, &scream, "scream.wav",
 SL_PRIORITY_NORMAL);
Create3DSource(EngineItf, OutputMix, &footstep, "footstep.wav",
SL_PRIORITY_NORMAL);
Create3DSource(EngineItf, OutputMix, &torch, "torch.wav",
SL_PRIORITY_LOW);

/* Set the gunshot's 3D source properties */
res = (*gunshot)->GetInterface(gunshot, SL_IID_3DSOURCE,
(void*)&sourceItf); CheckErr(res);
/* Set rolloff model to linear */
(*sourceItf)->SetRolloffModel(sourceItf, SL_ROLLOFFMODEL_LINEAR);
CheckErr(res);
/* Exaggerate the gunshot's rolloff */
(*sourceItf)->SetRolloffFactor(sourceItf, 1500); CheckErr(res);
/* Add Doppler to the gunshot, if possible */
res = (*gunshot)->GetInterface(gunshot, SL_IID_3DDOPPLER,
(void*)&dopplerItf);
if (res != SL_RESULT_SUCCESS)
{
/* Doppler not available - not crucial though */
}
else
{
SLVec3D vec;
/* Exaggerate gunshot's Doppler */
(*dopplerItf)->SetDopplerFactor(dopplerItf, 2000);
CheckErr(res);
/* Set gunshot's velocity to move away from the listener */
vec.x = 0; vec.y = 0; vec.z = -1000;
(*dopplerItf)->SetVelocityCartesian(dopplerItf, &vec);
CheckErr(res);
}
else
{
/* Exit - game isn't viable without gunshot */
exit(1);
}

/* Set foot step's 3D source properties */
res = (*footstep)->GetInterface(footstep, SL_IID_3DSOURCE,
(void*)&sourceItf); CheckErr(res);
/* Set foot steps as head relative - as the listener moves, so do the foot steps. */
res = (*sourceItf)->SetHeadRelative(sourceItf, SL_BOOLEAN_TRUE);
CheckErr(res);
}
else
{ /* Exit - game isn't viable without gunshot */
 exit(1);
}

(*torch)->GetState(torch, &state);
if (state == SL_OBJECT_STATE_REALIZED)
{
 SLVec3D vec;
 SLSeekItf seekItf;
 res = (*torch)->GetInterface(torch, SL_IID_PLAY, (void*)&playItf);
 CheckErr(res);
 res = (*torch)->GetInterface(torch, SL_IID_3DLOCATION, (void*)&locationItf);
 CheckErr(res);
 res = (*torch)->GetInterface(torch, SL_IID_SEEK, (void*)&seekItf);
 CheckErr(res);
 /* Position the torch somewhere in 3D space */
 vec.x = 30000; vec.y = 0; vec.z = -26000;
 (*locationItf)->SetLocationCartesian(locationItf, &vec);
 CheckErr(res);
 /* Play torch constantly looping */
 (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0, SL_TIME_UNKNOWN);
 CheckErr(res);
 /* Commit 3D settings before playing */
 (*commitItf)->Commit(commitItf);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);
}
else
{
 /* Torch isn't available. Could try realizing again but torch sound
 effect isn't crucial to game play. */
}

/* Main game loop */
{ int dead = 0;
 while (!dead)
 {
 int gameEvent;
 SLVec3D vec;
 /* Handle game events */
 gameEvent = GAMEGetEvents();
 switch(gameEvent)
 {
 case EVENT_GUNSHOT:
 /* Fire gun shot */
res = (*gunshot)->GetInterface(gunshot, SL_IID_PLAY, (void *) &playItf); CheckErr(res);
(*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);
break;

case EVENT_DEATH:
 /* Player has been shot, scream! */
 res = (*scream)->GetInterface(scream, SL_IID_PLAY, (void *) &playItf); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);
 dead = !dead;
 break;

case EVENT_FOOTSTEP:
 /* Play foot steps */
 res = (*footstep)->GetInterface(footstep, SL_IID_PLAY, (void *) &playItf); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);
 break;
}

/* Update location of gun shot, scream and listener based on information from game engine. No need to update foot steps as they are head relative (i.e. move with the listener). */
GAMEGetLocation(OBJECT_LISTENER, &vec.x, &vec.y, &vec.z);
res = (*listener)->GetInterface(listener, SL_IID_3DLOCATION, (void *) &locationItf); CheckErr(res);
(*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

GAMEGetLocation(OBJECT_GUNSHOT, &vec.x, &vec.y, &vec.z);
res = (*gunshot)->GetInterface(gunshot, SL_IID_3DLOCATION, (void *) &locationItf); CheckErr(res);
(*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

GAMEGetLocation(OBJECT_SCREAM, &vec.x, &vec.y, &vec.z);
res = (*scream)->GetInterface(scream, SL_IID_3DLOCATION, (void *) &locationItf); CheckErr(res);
(*locationItf)->SetLocationCartesian(locationItf, &vec);
CheckErr(res);

/* Commit 3D settings otherwise 3D positions will not be updated. */
(*commitItf)->Commit(commitItf);
SLEEP(10);
/* Wait until scream finished before exiting */
(*scream)->GetState(scream, &state);
if (state == SL_OBJECT_STATE_REALIZED)
{
 res = (*scream)->GetInterface(scream, SL_IID_PLAY, (void *)&playItf); CheckErr(res);
 do
 {
 (*playItf)->GetPlayState(playItf, &state); CheckErr(res);
 SLEEP(10);
 } while (state == SL_PLAYSTATE_PLAYING);
}

/* Destroy the players */
(*gunshot)->Destroy(gunshot);
(*scream)->Destroy(scream);
(*footstep)->Destroy(footstep);
(*torch)->Destroy(torch);

/* Destroy the listener object */
(*listener)->Destroy(listener);

/* Destroy Output Mix object */
(*OutputMix)->Destroy(OutputMix);

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;

 SLEngineOption EngineOption[] = {
 (SLuint32)SL_ENGINEOPTION_THREADSAFE, (SLuint32)SL_BOOLEAN_TRUE,
 }
 SLboolean required = SL_BOOLEAN_TRUE;
 SLInterfaceID iid = SL_IID_3DCOMMIT;

 /* Create an engine with the 3DCommit interface present */
 res = slCreateEngine(&sl, 1, EngineOption, 1, &iid, &required);
 CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestAdvanced3D(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
}
B.6 Effects

B.6.1 Environmental Reverb

Creates a 3D scene with four sound sources constantly playing and background music. As the listener moves between rooms the reverb environment changes.

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define SLEEP(x) // Client system sleep function to sleep x milliseconds would replace SLEEP macro

#define MAX_NUMBER_INTERFACES 3

/* Four static objects */
#define STATIC0_FILENAME   "fireplace.wav"
#define STATIC0_RVB        0
#define STATIC1_FILENAME   "fountain.wav"
#define STATIC1_RVB        -300  /* Fountain has -3 dB reverb level */
#define STATIC2_FILENAME   "anvil.wav"
#define STATIC2_RVB        -300  /* Anvil has -3 dB reverb level */
#define STATIC3_FILENAME   "clocktick.wav"
#define STATIC3_RVB        -150  /* Clocktick has -1.5 dB reverb level */

/* Game engine objects */
#define OBJECT_LISTENER (int)0x00000001
#define OBJECT_STATIC0  (int)0x00000002
#define OBJECT_STATIC1  (int)0x00000003
#define OBJECT_STATIC2  (int)0x00000004
#define OBJECT_STATIC3  (int)0x00000005

/* Game engine rooms */
#define LOCATION_COURTYARD    (int)0x00000001
#define LOCATION_GREATHALL    (int)0x00000002
#define LOCATION_FRONTGARDEN  (int)0x00000003
#define LOCATION_BEDROOM      (int)0x00000004
#define LOCATION_EXIT         (int)0x00000005
#define LOCATION_UNKNOWN      (int)0xFFFFFFFF

/* External game engine functions */
extern void GAMEGetLocation( int object, int *x, int *y, int *z);
extern int GAMEGetListenerRoom( void );

/* Checks for error. If any errors exit the application! */
```
void CheckErr(SLresult res)
{
 if (res != SL_RESULT_SUCCESS)
 {
 // Debug printing to be placed here
 exit(1);
 }
}

/* Create a 3D source positioned at (x, y, z), with reverb level reverbLevel. */
void Create3DSource(SLEngineItf EngineItf, SLObjectItf OutputMix,
 SLEnvironmentalReverbItf reverbItf,
 SLObjectItf *pPlayer,
 SLchar *fileName, SLint32 x, SLint32 y, SLint32 z,
 SLmillibel reverbLevel)
{
 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;
 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

 SL3DLocationItf locationItf;
 SLEffectSendItf effectSendItf;
 SLSeekItf seekItf;
 SLPlayItf playItf;

 SLresult res;

 SLVec3D coords;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Setup the data source structure for the player */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = fileName;
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *)"audio/x-wav";
 mime.containerType = SL CONTAINERTYPE_WAV;
 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = OutputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;
/* Set arrays required[] and iidArray[] for 3DLocationItf,
EffectSendItf, SeekItf interfaces (PlayItf is implicit). */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_EFFECTSEND;
 required[2] = SL_BOOLEAN_TRUE;
 iidArray[2] = SL_IID_SEEK;

/* Create the 3D player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, pPlayer,
 &audioSource, &audioSink, 3, iidArray, required); CheckErr(res);
{
 SLObjectItf player = *pPlayer;
 /* Realize the player in synchronously */
 res = (*player)->Realize(player, SL_BOOLEAN_TRUE); CheckErr(res);
 /* Get the 3D location interfaces, set the 3D position */
 res = (*player)->GetInterface(player, SL_IID_3DLOCATION, (void *)
(&locationItf)); CheckErr(res);
 coords.x = x;
 coords.y = y;
 coords.z = z;
 res = (*locationItf)->SetLocationCartesian(locationItf, &coords);
 /* Get the effect send interface, set the reverb level for the
sound source */
 res = (*player)->GetInterface(player, SL_IID_EFFECTSEND, (void *)
(&effectSendItf)); CheckErr(res);
 (*effectSendItf)->EnableEffectSend(effectSendItf, &reverbItf,
SL_BOOLEAN_TRUE, reverbLevel);
 /* Get the seek interface and enable looping of the whole file */
 (*player)->GetInterface(player, SL_IID_SEEK, (void *)
(&seekItf)); CheckErr(res);
 (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0, SL_TIME_UNKNOWN);
 CheckErr(res);
 /* Get the play interface and start playing. */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)
(&playItf)); CheckErr(res);
 (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);
}

/* A listener moves around a scene that contains four
sound sources. As the listener moves the reverb
changes to adapt to the environment the listener is in.
Music is also played in the background. */
void TestEnvironmentalReverb(SLObjectItf sl)
{
 SLEngineItf EngineItf;
 SLresult res;
 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;
 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;
 SLObjectItf music;
 SLPlayItf playItf;
 SLObjectItf player[4];
 SLObjectItf listener;
 SL3DLocationItf listenerLocationItf;
 SLObjectItf OutputMix;
 SLEnvironmentalReverbItf reverbItf;

 int i;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /* Get the SL Engine Interface which is implicit */
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
 CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
 for (i=0;i<MAX_NUMBER_INTERFACES;i++)
 {
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
 }

 /**** OUTPUT MIX ***/
 / * Uses the default output device(s). */
 / * Includes environmental reverb auxiliary effect for */
 / * players requiring use of reverb (in this case the */
 / * anvil). */
 /**/

 /* Create Output Mix object to be used by player, */
 /* requesting use of the environmental reverb */
 /* interface. */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_ENVIRONMENTALREVERB;
 res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
 iidArray, required); CheckErr(res);
/* Realizing the Output Mix object in synchronous mode. */
res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);

/* Get environment reverb interface. */
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_ENVIRONMENTALREVERB, (void *)&reverbItf);
CheckErr(res);

/**** LISTENER **/
/* Listener that we'll move around in response to */
/* application events (e.g. d-pad movement). */
/*****************************/

/* Create 3D listener */
required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
res = (*EngineItf)->CreateListener(EngineItf, &listener, 1, iidArray, required);
CheckErr(res);

/* Realizing the listener object in synchronous mode. */
res = (*listener)->Realize(listener, SL_BOOLEAN_FALSE);
CheckErr(res);

/* Get listener's location interface. */
res = (*listener)->GetInterface(listener, SL_IID_3DLOCATION, (void *)&listenerLocationItf);
CheckErr(res);

/**** BACKGROUND MUSIC ********************************/
/* Music that's played in the background. */
/*****************************/

/* Setup the data source structure for the background music */
uri.locatorType = SL_DATALOCATOR_URI;
uri.URI = (SLchar *) "file:///backgroundmusic.wav";
mime.formatType = SL_DATAFORMAT_MIME;
mime.mimeType = (SLchar *) "audio/x-wav";
mime.containerType = SL_CONTAINERTYPE_WAV;
audioSource.pLocator = (void *)&uri;
audioSource.pFormat = (void *)&mime;

/* Setup the data sink structure */
locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = OutputMix;
audioSink.pLocator = (void *)&locator_outputmix;
audioSink.pFormat = NULL;

/* The background music should be rendered in 2D so we do not request the 3DLocationItf interface.
We also do not want the music to have reverb applied to it so we do not request the EffectSendItf interfaces (PlayItf is implicit). */

/* Create the music player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &music, &audioSource, &audioSink, 0, iidArray, required); CheckErr(res);

/* Realizing the player in synchronous mode. */
res = (*music)->Realize(music, SL_BOOLEAN_FALSE); CheckErr(res);

/* Start playing music */
res = (*music)->GetInterface(music, SL_IID_PLAY, (void *)&playItf); CheckErr(res);
(*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);

/**** OBJECTS ***/
/* There are four looping sound sources positioned in */
/* various places in the 3D scene (as determined by */
/* the game engine), each included in the */
/* environmental reverb. */
/***/
{
 SLint32 x, y, z;

 GAMEGetLocation(OBJECT_STATIC0, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[0], STATICO_FILENAME, x, y, z, STATICO_RVB);

 GAMEGetLocation(OBJECT_STATIC1, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[1], STATIC1_FILENAME, x, y, z, STATIC1_RVB);

 GAMEGetLocation(OBJECT_STATIC2, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[2], STATIC2_FILENAME, x, y, z, STATIC2_RVB);

 GAMEGetLocation(OBJECT_STATIC3, &x, &y, &z);
 Create3DSource(EngineItf, OutputMix, reverbItf, &player[3], STATIC3_FILENAME, x, y, z, STATIC3_RVB);
}

/* Main loop */
{
 int exit = 0;
 int oldEnvironment = LOCATION_UNKNOWN;

 while (!exit)
 {
 SLVec3D vec;
 int environment;

 /* Update location listener based on information from game */
 /* engine. */
 GAMEGetLocation(OBJECT_LISTENER, &vec.x, &vec.y, &vec.z);
 (*listenerLocationItf)->SetLocationCartesian(listenerLocationItf, &vec); CheckErr(res);
/* Change the listener's environment based on the room the
listener is located in. */
environment = GAMEGetListenerRoom();
if (environment != oldEnvironment)
{
 switch (environment)
 {
 case LOCATION_COURTYARD:
 {
 SLEnvironmentalReverbSettings rvbSettings =
 SL_I3DL2_ENVIRONMENT_PRESET_QUARRY;
 (*reverbItf)->SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_GREATHALL:
 {
 SLEnvironmentalReverbSettings rvbSettings =
 SL_I3DL2_ENVIRONMENT_PRESET_LARGEHALL;
 (*reverbItf)->SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_FRONTGARDEN:
 {
 SLEnvironmentalReverbSettings rvbSettings =
 SL_I3DL2_ENVIRONMENT_PRESET_GENERIC;
 (*reverbItf)->SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_BEDROOM:
 {
 SLEnvironmentalReverbSettings rvbSettings =
 SL_I3DL2_ENVIRONMENT_PRESET_SMALLROOM;
 (*reverbItf)->SetEnvironmentalReverbProperties(reverbItf, &rvbSettings);
 }
 break;
 case LOCATION_EXIT:
 exit = 1;
 break;
 }
 oldEnvironment = environment;
}
SLEEP(10);
/* Destroy the players */
(*music)->Destroy(music);
B.6.2 Equalizer

This example shows the OpenSL ES part of an interactive equalizer GUI.

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 5

/* Global variables. (Should be local in real application.) */
SLObjectItf engine; /* OpenSL ES Engine */
SLObjectItf player;
SLObjectItf outputMix;
SLObjectItf playItf;
SLErrorItf equalizerItf;

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
```
```c
{  
    // Debug printing to be placed here
    exit(1);
}

/*
 * Draws single EQ band to the screen. Called by drawEQDisplay
 */
void drawEQBand(int minFreq, int maxFreq, int level)
{
    /* insert drawing routines here for single EQ band
     (use GetBandLevelRange and screen height to map the level to screen
     y-coordinate) */
}

/*
 * Called when the display is repainted.
 */
void drawEQDisplay()
{
    SLuint16 numBands;
    SLmillibel bandLevel, minLevel, maxLevel;
    SLmilliHertz minFreq, maxFreq;
    int band;
    SLresult res;

    res = (*equalizerItf)->GetNumberOfBands( equalizerItf, &numBands );
    CheckErr(res);
    res = (*equalizerItf)->GetBandLevelRange( equalizerItf, &minLevel, &maxLevel );
    CheckErr(res);

    for(band = 0; band<numBands; band++)
    {
        res = (*equalizerItf)->GetBandFreqRange( equalizerItf, (SLint16)band, &minFreq, &maxFreq );
        CheckErr(res);
        res = (*equalizerItf)->GetBandLevel( equalizerItf, (SLint16)band, &bandLevel );
        CheckErr(res);
        drawEQBand(minFreq, maxFreq, bandLevel);
    }
}

/*
 * Initializes the OpenSL ES engine and start the playback of
 * some music from a file and draw the graphical equalizer
 */
void init()
{
    SLEngineItf     EngineItf;

    SLresult res;
```
SLDataSource audioSource;
SLDataLocator_URI uri;
SLDataFormat_MIME mime;

SLDataSink audioSink;
SLDataLocator_OutputMix locator_outputmix;

SLVolumeItf volumeItf;

int i;

SLboolean required[MAX_NUMBER_INTERFACES];
SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

SLEngineOption EngineOption[] = {(SLuint32)
SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

/* Create OpenSL ES */
res = slCreateEngine(&engine, 1, EngineOption, 0, NULL, NULL);
CheckErr(res);
/* Realizing the SL Engine in synchronous mode. */
res = (*engine)->Realize(engine, SL_BOOLEAN_FALSE); CheckErr(res);
/* Get the SL Engine Interface which is implicit*/
res = (*engine)->GetInterface(engine, SL_IID_ENGINE, (void *) &EngineItf); CheckErr(res);
/* Initialize arrays required[] and iidArray[] */
for (i=0;i<MAX_NUMBER_INTERFACES;i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}
/* Set arrays required[] and iidArray[] for VOLUME and EQUALIZER interfaces */
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_VOLUME;
required[1] = SL_BOOLEAN_TRUE;
iidArray[1] = SL_IID_EQUALIZER;
/* Create Output Mix object to be used by player */
res = (*EngineItf)->CreateOutputMix(EngineItf, &outputMix, 2, iidArray, required); CheckErr(res);
/* Realizing the Output Mix object in synchronous mode. */
res = (*outputMix)->Realize(outputMix, SL_BOOLEAN_FALSE);
CheckErr(res);
/* Get play and equalizer interface */
res = (*outputMix)->GetInterface(outputMix, SL_IID_VOLUME, (void *) &volumeItf); CheckErr(res);
res = (*outputMix)->GetInterface(outputMix, SL_IID_EQUALIZER, (void *)&equalizerItf); CheckErr(res);

 /* Setup the data source structure */
 uri.locatorType = SL_DATALOCATOR_URI;
 uri.URI = (SLchar *)"file:///music.wav";
 mime.formatType = SL_DATAFORMAT_MIME;
 mime.mimeType = (SLchar *)"audio/x-wav";
 mime.containerType = SL_CONTAINERTYPE_WAV;
 audioSource.pLocator = (void *)&uri;
 audioSource.pFormat = (void *)&mime;

 /* Setup the data sink structure */
 locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
 locator_outputmix.outputMix = outputMix;
 audioSink.pLocator = (void *)&locator_outputmix;
 audioSink.pFormat = NULL;

 /* Set arrays required[] and iidArray[] for no interfaces (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_FALSE;
 iidArray[0] = SL_IID_NULL;
 required[1] = SL_BOOLEAN_FALSE;
 iidArray[1] = SL_IID_NULL;

 /* Create the music player */
 res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
 &audioSource, &audioSink, 0, iidArray, required); CheckErr(res);

 /* Realizing the player in synchronous mode. */
 res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

 /* Get the play interface */
 res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
 CheckErr(res);

 /* Before we start set volume to -3dB (-300mB) and enable equalizer */
 res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);
 res = (*equalizerItf)->SetEnabled(equalizerItf, SL_BOOLEAN_TRUE);
 CheckErr(res);

 /* Play the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
 CheckErr(res);

 /* Draw the graphical EQ */
 drawEQDisplay();
}

/**
* Shuts down the OpenSL ES engine.
*/
void destroy()
{
 SLresult res;

 /* Stop the music */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
 CheckErr(res);
 /* Destroy the player */
 (*player)->Destroy(player);
 /* Destroy Output Mix object */
 (*outputMix)->Destroy(outputMix);
 /* Shutdown OpenSL ES */
 (*engine)->Destroy(engine);
}

/*
* Called by UI when user increases or decreases a band level.
*/
void setBandLevel(SLint16 band, SLboolean increase)
{
 SLuint16 numBands;
 SLmillibel bandLevel, minLevel, maxLevel;
 SLresult res;

 res = (*equalizerItf)->GetNumberOfBands(equalizerItf, &numBands);
 CheckErr(res);
 res = (*equalizerItf)->GetBandLevelRange(equalizerItf, &minLevel, &maxLevel);
 CheckErr(res);

 if(band >= numBands) {
 /* Error. Insert debug print here. */
 exit(0);
 }

 res = (*equalizerItf)->GetBandLevel(equalizerItf, band, &bandLevel);
 CheckErr(res);

 if(increase==SL_BOOLEAN_TRUE)
 {
 /* increase the level by 1 dB (100mB) if the max supported level is not exceeded */
 bandLevel = bandLevel + 100;
 if(bandLevel < maxLevel)
 {
 res = (*equalizerItf)->SetBandLevel(equalizerItf, band, bandLevel);
 CheckErr(res);
 drawEQDisplay();
 }
 } else /* increase==false */
 {

/* decrease the level by 1 dB (100mB) if the min supported level is not crossed */
 bandLevel = bandLevel - 100;
 if(bandLevel > minLevel)
 {
 res = (*equalizerItf)->SetBandLevel(equalizerItf, band, bandLevel); CheckErr(res);
 drawEQDisplay();
 }
}
B.7 IO Devices and capabilities

B.7.1 Engine capabilities

Engine Capabilities Example.

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define MAX_NUMBER_LED_DEVICES 3
#define MAX_NUMBER_VIBRA_DEVICES 3
#define POSITION_UPDATE_PERIOD 1000 /* 1 sec */

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        /* Debug printing to be placed here */
        exit(1);
    }
}

/* Test the querying of capabilities of an OpenSL ES engine */
void TestEngineCapabilities(SLObjectItf sl)
{
    SLEngineCapabilitiesItf EngineCapabilitiesItf;
    SLVibraDescriptor VibraDescriptor[MAX_NUMBER_VIBRA_DEVICES];
    SLLEDDescriptor LEDDescriptor[MAX_NUMBER_LED_DEVICES];

    SLresult                res;
    SLuint32                i = 0, numLEDDevices = 0,
                            LEDDeviceID[MAX_NUMBER_LED_DEVICES];
    SLuint32                numVibraDevices = 0, VibraDeviceID[MAX_NUMBER_VIBRA_DEVICES];
    SLboolean               isThreadSafe = SL_BOOLEAN_FALSE;

    SLint16                profilesSupported = 0;
    SLboolean               isPhoneProfileSupported = SL_BOOLEAN_FALSE;
    SLboolean               isMusicProfileSupported = SL_BOOLEAN_FALSE;
    SLboolean               isGameProfileSupported = SL_BOOLEAN_FALSE;
    SLint16                numMIDISynthesizers = 0;

    SLint16                numMax2DVoices = 0, numFree2DVoices = 0;
    SLboolean               isAbsoluteMax2D = SL_BOOLEAN_FALSE;
```
SLint16 numMaxMIDIVoices = 0, numFreeMIDIVoices = 0;
SLboolean isAbsoluteMaxMIDI = SL_BOOLEAN_FALSE;

SLint16 numMax3DVoices = 0, numFree3DVoices = 0;
SLboolean isAbsoluteMax3D = SL_BOOLEAN_FALSE;

SLint16 numMax3DMidiVoices = 0, numFree3DMidiVoices = 0;
SLboolean isAbsoluteMax3DMidi = SL_BOOLEAN_FALSE;

SLint16 vMajor = 0, vMinor = 0, vStep = 0;

/* Get the Engine Capabilities interface - an implicit interface */
res = (*sl)->GetInterface(sl, SL_IID_ENGINECAPABILITIES, (void *)&EngineCapabilitiesItf); CheckErr(res);

/* Query profile support */
res = (*EngineCapabilitiesItf)->QuerySupportedProfiles(EngineCapabilitiesItf, &profilesSupported); CheckErr(res);

if (profilesSupported & SL_PROFILES_PHONE)
 isPhoneProfileSupported = SL_BOOLEAN_TRUE;
if (profilesSupported & SL_PROFILES_MUSIC)
 isMusicProfileSupported = SL_BOOLEAN_TRUE;
if (profilesSupported & SL_PROFILES_GAME)
 isGameProfileSupported = SL_BOOLEAN_TRUE;

/* Query available voices for 2D audio */
res = (*EngineCapabilitiesItf)->QueryAvailableVoices(EngineCapabilitiesItf, SL_VOICETYPE_2D_AUDIO, &numMax2DVoices, &isAbsoluteMax2D, &numFree2DVoices); CheckErr(res);

/* Query available voices for MIDI. Note: MIDI is mandated only in the PHONE and GAME profiles. */
res = (*EngineCapabilitiesItf)->QueryAvailableVoices(EngineCapabilitiesItf, SL_VOICETYPE_MIDI, &numMaxMIDIVoices, &isAbsoluteMaxMIDI, &numFreeMIDIVoices); CheckErr(res);

/* 3D audio functionality is mandated only in the game profile, so might want to query for 3D voice types only if GAME profile is supported */
if (isGameProfileSupported) {
 res = (*EngineCapabilitiesItf)->QueryAvailableVoices(EngineCapabilitiesItf, SL_VOICETYPE_3D_AUDIO, &numMax3DVoices, &isAbsoluteMax3D, &numFree3DVoices); CheckErr(res);
 res = (*EngineCapabilitiesItf)->QueryAvailableVoices(EngineCapabilitiesItf, SL_VOICETYPE_3D_MIDIOUTPUT, &numMax3DMidiVoices, &isAbsoluteMax3DMidi, &numFree3DMidiVoices); CheckErr(res);
}

/* Query number of MIDI synthesizers */
res = (*EngineCapabilitiesItf)->QueryNumberOfMIDISynthesizers(EngineCapabilitiesItf, &numMIDISynthesizers); CheckErr(res);
/* Do something with MIDI synthesizer information */

/* Query API version */
res = (*EngineCapabilitiesItf)->QueryAPIVersion(EngineCapabilitiesItf, &vMajor, &vMinor, &vStep); CheckErr(res);

/* Do something with API version information */

/* Query number of LED devices present in the system */
res = (*EngineCapabilitiesItf)->QueryLEDCapabilities(EngineCapabilitiesItf, &numLEDDevices, NULL, NULL); CheckErr(res);

/* Get the capabilities of each LED device present */
for(i=0; i< numLEDDevices; i++) {
/* Retrieve the LEDdeviceID for each of the LED devices found on the system */
res = (*EngineCapabilitiesItf)->QueryLEDCapabilities(EngineCapabilitiesItf, &i, &LEDDeviceID[i], NULL); CheckErr(res);
/* Either the index i or the LEDdeviceID can be used to retrieve the capabilities of each LED device; we choose to use the LEDDeviceID here */
res = (*EngineCapabilitiesItf)->QueryLEDCapabilities(EngineCapabilitiesItf, NULL, &LEDDeviceID[i], &LEDDescriptor[i]); CheckErr(res);
}

/* Query number of vibra devices present in the system */
res = (*EngineCapabilitiesItf)->QueryVibraCapabilities(EngineCapabilitiesItf, &numVibraDevices, NULL, NULL); CheckErr(res);

/* Get the capabilities of each vibra device present */
for(i=0;i< numVibraDevices; i++) {
/* Retrieve the VibradeviceID for each of the Vibra devices found on the system */
res = (*EngineCapabilitiesItf)->QueryVibraCapabilities(EngineCapabilitiesItf, &i, &VibraDeviceID[i], NULL); CheckErr(res);
/* Either the index i or the VibraDeviceID can be used to retrieve the capabilities of each Vibra device; we choose to use the VibraDeviceID here */
res = (*EngineCapabilitiesItf)->QueryVibraCapabilities(EngineCapabilitiesItf, NULL, &VibraDeviceID[i], &VibraDescriptor[i]); CheckErr(res);
}

/* Determine if implementation is thread safe */
res = (*EngineCapabilitiesItf)->IsThreadSafe(EngineCapabilitiesItf, &isThreadSafe); CheckErr(res);

/* Do something with thread-safety information returned */

int sl_main(void)
{
SLresult res;
SLObjectItf sl;

/* Create OpenSL ES engine in thread-safe mode */
SLEngineOption EngineOption[] = { (SLuint32) SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL); CheckErr(res);

 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestEngineCapabilities(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 exit(0);
Appendix C: Use Case Sample Code

C.1 Introduction

This appendix provides sample code illustrating how objects can be used together to support one simple use case for each profile. A description of each use case is followed by an object relationship diagram and sample code. The sample code shows how to use the API and is for purposes of illustration only – it is not intended to provide realistic application code. Specifically, the sample code uses getchar for purposes of illustration only and includes limited error handling for the sake of clarity.

C.2 Music Profile

This example shows how the API is used in the following case:

Play some music from a file, adding/removing Reverb and enabling/disabling Stereo Positioning when requested by a user. The application also receives music playback progress indications via callbacks, so that a progress bar can be displayed for the user. The resources for Reverb are added and removed dynamically to illustrate use of the Dynamic Interface Management functionality.

C.2.1 Object Relationships

![Object relationships diagram]

Figure 40: Object relationships
C.2.2 Example Code

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 4
#define MAX_NUMBER_OUTPUT_DEVICES 6
#define POSITION_UPDATE_PERIOD 1000     /* 1 second */

/*========================================================================*/
/* Dummy semaphore and event related types, prototypes and defines */
typedef SLuint16 Sem_t;    /* System semaphore type would replace Sem_t */
Sem_t semDIM;

void sem_post(Sem_t *pSemaphore)
{
    /* Implementation specific semaphore post */
}

void sem_wait(Sem_t *pSemaphore)
{
    /* Implementation specific semaphore wait */
}

#define MAX_NUMBER_EVENTS 50
void* eventQueue[MAX_NUMBER_EVENTS];

void event_post(void* eventQueue[], void* event)
{
    /* Implementation specific event post */
}

void* event_read(void* eventQueue[])
{
    void* result_p = NULL;
    /* Implementation specific event read */
    return result_p;
}

/*========================================================================*/

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        /* Debug printing to be placed here */
        exit(1);
    }
}
```
SLresult asyncRes; /* Global variable used to pass result back to client */

void DIMCallback(SLDynamicInterfaceManagementItf caller,
 void *pContext,
 SLuint32 event,
 SLresult result,
 const SLInterfaceID iid)
{
 if(event==SL_DYNAMIC_ITF_EVENT_ASYNC_TERMINATION)
 {
 if((iid == SL_IID_PRESETREVERB))
 {
 asyncRes=result; /* Better and safer to set member of *pContext in context of client thread */
 but global variable used to pass result back to client for simplicity */
 sem_post(&semDIM);
 }
 }
 else
 {
 /* Debug printing to be placed here */
 exit(1);
 }
}

typedef struct queue_playevent_t {
 SLPlayItf caller;
 void *pContext;
 SLuint32 playevent;
} queue_playevent_t;

/* Callback for position events */
void PlayEventCallback(SLPlayItf caller,
 void *pContext,
 SLuint32 playevent)
{
 queue_playevent_t queue_playevent={caller, pContext, playevent};
 event_post(eventQueue, (void*)&queue_playevent);
}

/* Example main event loop thread for handling Play events*/
void eventThread()
{
 queue_playevent_t* queue_playevent_p;
 while(1) /* Event loop */
 {
 queue_playevent_p=(queue_playevent_t*)event_read(eventQueue);
 switch(queue_playevent_p->playevent)
 {
 case SL_PLAYEVENT_HEADATNEWPOS:
 /* Advance progress bar by 1 second */
/* Play some music from a file, adding PresetReverb and changing stereo position when requested as well as doing progress bar callbacks */
void TestPlayMusicStereoPositionAndReverb(SLObjectItf sl)
{
 SLObjectItf EngineItf;
 SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
 SLAudioOutputDescriptor AudioOutputDescriptor;

 SLint32 OutputDeviceIDs[MAX_NUMBER_OUTPUT_DEVICES];
 SLint32 numOutputs = 0;
 SLboolean earpiece_available = SL_BOOLEAN_FALSE;
 SLboolean handsfree_speaker_available = SL_BOOLEAN_FALSE;
 SLboolean earpiece_or_handsfree_speaker_default = SL_BOOLEAN_FALSE;
 SLuint32 earpiece_deviceID = 0;
 SLuint32 handsfree_speaker_deviceID = 0;
 SLuint32 deviceID = 0;

 SLresult res;
 SLDataSource audioSource;
 SLDataLocator_URI uri;
 SLDataFormat_MIME mime;

 SLDataSink audioSink;
 SLDataLocator_OutputMix locator_outputmix;

 SLObjectItf player;
 SLPlayItf playItf;
 SLSeekItf seekItf;
 SLEffectSendItf effectSendItf;

 SLObjectItf OutputMix;
 SLVolumeItf volumeItf;
 SLDynamicInterfaceManagementItf dynamicInterfaceManagementItf;

 int i;
 char c;

 SLboolean required[MAX_NUMBER_INTERFACES];
 SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

 /*Get the SL Engine Interface which is implicit*/
 res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *) &EngineItf);
 CheckErr(res);

 /* Initialize arrays required[] and iidArray[] */
for (i=0; i<MAX_NUMBER_INTERFACES; i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}

/* Get the Audio IO DEVICE CAPABILITIES interface */
res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES, (void *) &AudioIODeviceCapabilitiesItf); CheckErr(res);
numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioOutputs(AudioIODeviceCapabilitiesItf, &numOutputs, OutputDeviceIDs);
CheckErr(res);

/* Search for phone earpiece output and phone speaker device */
for (i=0; i<numOutputs; i++)
{
 res = (*AudioIODeviceCapabilitiesItf)->QueryAudioOutputCapabilities(AudioIODeviceCapabilitiesItf, OutputDeviceIDs[i], &AudioOutputDescriptor); CheckErr(res);
 if((AudioOutputDescriptor.deviceConnection == SL_DEVCONNECTION_INTEGRATED) &&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_USER) &&
 (AudioOutputDescriptor.deviceLocation == SL_DEVLOCATION_HANDSET))
 {
 earpiece_deviceID = OutputDeviceIDs[i];
 earpiece_available = SL_BOOLEAN_TRUE;
 }
 else if((AudioOutputDescriptor.deviceConnection == SL_DEVCONNECTION_INTEGRATED) &&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_ENVIRONMENT) &&
 (AudioOutputDescriptor.deviceLocation == SL_DEVLOCATION_HANDSET))
 {
 handsfree_speaker_deviceID = OutputDeviceIDs[i];
 handsfree_speaker_available = SL_BOOLEAN_TRUE;
 }
}

numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
res = (*AudioIODeviceCapabilitiesItf)->GetDefaultAudioDevices(AudioIODeviceCapabilitiesItf, SL_DEFAULTDEVICEID_AUDIOOUTPUT, &numOutputs, OutputDeviceIDs);
CheckErr(res);
/* Check whether Default Output devices include either earpiece or phone speaker */
for (i=0; i<numOutputs; i++)
{
 if((OutputDeviceIDs[i] == earpiece_deviceID) ||
 (OutputDeviceIDs[i] == handsfree_speaker_deviceID))
 {

earpiece_or_handsfree_speaker_default = SL_BOOLEAN_TRUE;
break;
}

/* Expect earpiece or phone speaker to be set as default output device */
if(!earpiece_or_handsfree_speaker_default)
{
 /* Debug printing to be placed here */
 exit(1);
}

/* Set arrays required[] and iidArray[] for VOLUME interface */
required[0] = SL_BOOLEAN_TRUE;
IIDArray[0] = SL_IID_VOLUME;
/* Create Output Mix object to be used by player */
res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
 IIDArray, required); CheckErr(res);

 /* Realizing the Output Mix object in synchronous mode. */
 res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
 CheckErr(res);
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void *)&volumeItf); CheckErr(res);

/* Setup the data source structure */
uri.locatorType = SL_DATALOCATOR_URI;
uri.URI = "file:///music.wav";
mime.formatType = SL_DATAFORMAT_MIME;
mime.mimeType = "audio/x-wav";
mime.containerType = SL_CONTAINERTYPE_WAV;

audioSource.pLocator = (void *)&uri;
audioSource.pFormat = (void *)&mime;

/* Setup the data sink structure */
locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = OutputMix;
audioSink.pLocator = (void *)&locator_outputmix;
audioSink.pFormat = NULL;

/* Set arrays required[] and iidArray[] for SEEK and EFFECTSEND interface (PlayItf is implicit) */
required[0] = SL_BOOLEAN_TRUE;
IIDArray[0] = SL_IID_SEEK;
required[1] = SL_BOOLEAN_TRUE;
IIDArray[1] = SL_IID_EFFECTSEND;

/* Create the music player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
 &audioSource, &audioSink, 2, IIDArray, required); CheckErr(res);
/* Realizing the player in synchronous mode. */
res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

/* Get seek, play and effect send interfaces */
res = (*player)->GetInterface(player, SL_IID_SEEK, (void *)&seekItf); CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf); CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_EFFECTSEND, (void *)&effectSendItf); CheckErr(res);

/* Setup to receive position event callbacks */
res = (*playItf)->RegisterCallback(playItf, PlayEventCallback, NULL); CheckErr(res);
res = (*playItf)->setPositionUpdatePeriod(playItf, POSITION_UPDATE_PERIOD); CheckErr(res);
res = (*playItf)->SetCallbackEventsMask(playItf, SL_PLAYEVENT_HEADATNEWPOS); CheckErr(res);

/* Before we start set volume to -3dB (-300mB) */
res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);

/* Set Stereo Position to right channel but do not enable stereo positioning */
res = (*volumeItf)->SetStereoPosition(volumeItf, 1000); CheckErr(res);

/* Get the Dynamic Interface Management interface for the Output Mix object */
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_DYNAMICINTERFACEMANAGEMENT, (void *)&dynamicInterfaceManagementItf); CheckErr(res);

/* Register DIM callback */
res = (*dynamicInterfaceManagementItf)->RegisterCallback(dynamicInterfaceManagementItf, DIMCallback, NULL); CheckErr(res);

/* Play the music */
res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);

while ((c = getchar()) != 'q')
{
 SLuint32 playState;
 SLPresetReverbItf PresetReverbItf;

 SLmillibel Min = SL_MILLIBEL_MIN;
 SLmillibel Max = 0;
 SLmillisecond PositionMSec = 0;
 SLboolean PresetReverbRealized = SL_BOOLEAN_FALSE;

 switch(c)
{
 case '1':
 /* Play the music - only do so if it's not already playing though */
 res = (*playItf)->GetPlayState(playItf, &playState);
 CheckErr(res);
 if (playState != SL_PLAYSTATE_PLAYING)
 {
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);
 }
 break;
 case '2':
 /* Pause the music - only do so if it is playing */
 res = (*playItf)->GetPlayState(playItf, &playState);
 CheckErr(res);
 if (playState == SL_PLAYSTATE_PLAYING)
 {
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PAUSED); CheckErr(res);
 }
 break;
 case '3':
 /* Enable Stereo Positioning */
 res = (*volumeItf)->EnableStereoPosition(volumeItf, SL_BOOLEAN_TRUE); CheckErr(res);
 break;
 case '4':
 /* Disable Stereo Positioning */
 res = (*volumeItf)->EnableStereoPosition(volumeItf, SL_BOOLEAN_FALSE); CheckErr(res);
 break;
 case '5':
 /* Add some Reverb if not already present and there are sufficient resources. */
 if (!PresetReverbRealized)
 {
 res = (*playItf)->GetPosition(playItf, &PositionMSec); CheckErr(res);
 res = (*playItf)->GetPlayState(playItf, &playState);
 CheckErr(res);
 /* We need to stop the music first though. */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED); CheckErr(res);
 /* Dynamically add the PresetReverb interface to the Output Mix object */
 res = (*dynamicInterfaceManagementItf)->AddInterface(dynamicInterfaceManagementItf, SL_IID_PRESETREVERB, SL_BOOLEAN_FALSE); CheckErr(res);
 /* Wait until asynchronous call terminates */
 sem_wait(&semDIM);
 }
if (asyncRes == SL_RESULT_SUCCESS) {
 PresetReverbRealized = SL_BOOLEAN_TRUE;
 /* Get PresetReverb interface */
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_PRESETREVERB, (void *)&PresetReverbItf); CheckErr(res);
 /* Setup PresetReverb for LARGE HALL */
 res = (*PresetReverbItf)->SetPreset(PresetReverbItf, SL_REVERBPRESET_LARGEHALL); CheckErr(res);
 /* Enable the reverb effect and set the reverb level for Audio Player at -3dB (-300mB) */
 res = (*effectSendItf)->EnableEffectSend(effectSendItf, &PresetReverbItf, SL_BOOLEAN_TRUE, -300);
} else {
 /* Debug printing to be placed here */
 exit(1);
}

/* Set head to continue from position where it was stopped */
res = (*seekItf)->GetPosition(seekItf, PositionMSec, SL_SEEKMODE_FAST); CheckErr(res);
/* Go back to state before stopped */
res = (*playItf)->SetPlayState(playItf, playState);
CheckErr(res);
break;

case '6':
 /* Remove the Preset Reverb if present. */
 if (PresetReverbRealized) {
 res = (*playItf)->GetPosition(playItf, &PositionMSec); CheckErr(res);
 res = (*playItf)->GetPlayState(playItf, &playState); CheckErr(res);
 /* We need to stop the music first though. */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED); CheckErr(res);
 /* Disable the reverb effect for Audio Player */
 res = (*effectSendItf)->EnableEffectSend(effectSendItf, &PresetReverbItf, SL_BOOLEAN_FALSE, 0);
 /* Dynamically remove the PresetReverb interface from the Output Mix object */
 res = (*dynamicInterfaceManagementItf)->RemoveInterface(dynamicInterfaceManagementItf, SL_IID_PRESETREVERB); CheckErr(res);
 PresetReverbRealized = SL_BOOLEAN_FALSE;
/* Set head to continue from position where it was stopped */
 res = (*seekItf)->SetPosition(seekItf, PositionMSec, SL_SEEKMODE_FAST); CheckErr(res);
/* Go back to state before stopped */
 res = (*playItf)->SetPlayState(playItf, playState);
 CheckErr(res);
}
break;
default:
 break;
}
}

/* Stop the music */
res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED);
 CheckErr(res);
/* Destroy the player */
(*player)->Destroy(player);
/* Destroy Output Mix object */
(*OutputMix)->Destroy(OutputMix);
}

int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;
 char c;

 SLEngineOption EngineOption[] = {(SLuint32) SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 /* Simple test harness! */
 while ((c = getchar()) != 'q')
 {
 switch (c)
 {
 case '1':
 /* Create OpenSL ES */
 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
 CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestPlayMusicStereoPositionAndReverb(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 break;
 default:
 break;
 }
 }
 exit(0);
C.3 Phone Profile

This example shows how the API is used for the following case:

Listening to music on headset and incoming message alert requires MIDI to begin. Stop music playing on headset after storing final music play position.

Assume the application knows there is insufficient resources to have a MIDI player in existence at the same time as a Music player. So destroy the Music player and create a new MIDI player to generate message alert from file, playing audio using a different IODEvice output (phone handsfree speaker).

When MIDI player has completed playing, destroy MIDI player and create music player to continue playing on headset from where it stopped.

C.3.1 Object Relationships
C.3.2 Example Code

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define MAX_NUMBER_INTERFACES 3
#define MAX_NUMBER_OUTPUT_DEVICES 6

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        /* Debug printing to be placed here */
        exit(1);
    }
}

/* Listening to music in headphones and incoming message alert requires
MIDI to begin.
Stop music playing in headphones after storing final music play
position.
New MIDI player created to generate message alert from file to
different IODevice output (ring speaker).
When MIDI player completed playing then destroy Midi player and
create music player to continue play from where it stopped. */

void TestPhone( SLObjectItf sl )
{
    SLEngineItf                    EngineItf;
    SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
    SLAudioOutputDescriptor        AudioOutputDescriptor;

    SLuint32 OutputDeviceIDs[MAX_NUMBER_OUTPUT_DEVICES];
    SLint32    numOutputs = 0;
    SLboolean headset_available = SL_BOOLEAN_FALSE;
    SLboolean handsfree_speaker_available = SL_BOOLEAN_FALSE;
    SLuint32 headset_deviceID = 0;
    SLuint32 handsfree_speaker_deviceID = 0;
    SLuint32 deviceID = 0;

    SLresult                res;
    SLDataSource            audioSource;
    SLDataLocator_URI       uri;
    SLDataFormat_MIME       mime;
    SLDataSink              audioSink;
    SLDataLocator_OutputMix locator_outputmix;
```
SLObjectItf player;
SLPlayItf playItf;
SLSeekItf seekItf;

SLObjectItf OutputMix;
SLOutputMixItf outputMixItf;
SLVolumeItf volumeItf;

int i;
char c;

SLboolean required[MAX_NUMBER_INTERFACES];
SLInterfaceID iidArray[MAX_NUMBER_INTERFACES];

SLmillisecond DurationMsec = 0;

/*Get the SL Engine Interface which is implicit*/
res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
CheckErr(res);

/* Initialize arrays required[] and iidArray[] */
for (i=0; i<MAX_NUMBER_INTERFACES; i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}

/* Get the Audio IO DEVICE CAPABILITIES interface */
res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES, (void *)
&AudioIODeviceCapabilitiesItf); CheckErr(res);
numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioOutputs(
AudioIODeviceCapabilitiesItf, &numOutputs, OutputDeviceIDs);
CheckErr(res);

/* Search for headset output and phone handsfree speaker device */
for (i=0; i<numOutputs; i++)
{
 res = (*AudioIODeviceCapabilitiesItf)-
> QueryAudioOutputCapabilities(AudioIODeviceCapabilitiesItf,
OutputDeviceIDs[i], &AudioOutputDescriptor); CheckErr(res);
 if((AudioOutputDescriptor.deviceConnection ==
SL_DEVCONNECTION_ATTACHED_WIRED) &&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_USER) &&
 (AudioOutputDescriptor.deviceLocation ==
SL_DEVLOCATION_HEADSET))
 {
 headset_deviceID = OutputDeviceIDs[i];
 headset_available = SL_BOOLEAN_TRUE;
 }
else if((AudioOutputDescriptor.deviceConnection ==
 SL_DEVCONNECTION_INTEGRATED) &&
 (AudioOutputDescriptor.deviceScope ==
 SL_DEVSCOPE_ENVIRONMENT) &&
 (AudioOutputDescriptor.deviceLocation ==
 SL_DEVLOCATION_HANDSET))
 {
 handsfree_speaker_deviceID = OutputDeviceIDs[i];
 handsfree_speaker_available = SL_BOOLEAN_TRUE;
 }
}

/* Expect both headset output and phone handsfree speaker to be available */
if(!(headset_available && handsfree_speaker_available))
 {
 /* Debug printing to be placed here */
 exit(1);
 }

/* Set arrays required[] and iidArray[] for VOLUME interface */
required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_VOLUME;

/* Create Output Mix object to be used by player */
res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 1,
 iidArray, required); CheckErr(res);

/* Realizing the Output Mix object in synchronous mode. */
res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE);
CheckErr(res);
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void *) &volumeItf); CheckErr(res);

/* Get Output Mix interface */
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_OUTPUTMIX, (void *) &outputMixItf); CheckErr(res);
/* Route output to headset */
res = (*outputMixItf)->ReRoute(outputMixItf, 1, &headset_deviceID);
CheckErr(res);

/* Setup the data source structure */
uri.locatorType = SL_DATALOCATOR_URI;
uri.URI = "file:///music.wav";
mime.formatType = SL_DATAFORMAT_MIME;
mime.mimeType = "audio/x-wav";
mime.containerType = SL_CONTAINERTYPE_WAV;

audioSource.pLocator = (void *) &uri;
audioSource.pFormat = (void *) &mime;

/* Setup the data sink structure */
void locator_outputmix(locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = OutputMix;
audioSink.pLocator = (void *)&locator_outputmix;
audioSink.pFormat = NULL;

/* Set arrays required[] and iidArray[] for SEEK interface (PlayItf is implicit) */
required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_SEEK;

/* Create the music player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player,
&audioSource, &audioSink, 1, iidArray, required); CheckErr(res);

/* Realizing the player in synchronous mode. */
res = (*player)->Realize(player, SL_BOOLEAN_FALSE); CheckErr(res);

/* Get seek and play interfaces */
res = (*player)->GetInterface(player, SL_IID_SEEK, (void *)&seekItf);
CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf);
CheckErr(res);

/* Before we start set volume to -3dB (-300mB) */
res = (*volumeItf)->SetVolumeLevel(volumeItf, -300); CheckErr(res);

/* Get duration of content */
res = (*playItf)->GetDuration(playItf, &DurationMsec); CheckErr(res);
if (DurationMsec != SL_TIME_UNKNOWN)
{
 /* Enable looping of entire file */
 res = (*seekItf)->SetLoop(seekItf, SL_BOOLEAN_TRUE, 0,
DurationMsec); CheckErr(res);
} else
{
 /* Debug printing to be placed here */
 exit(1);
}

/* Play the music */
res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_PLAYING);
CheckErr(res);

while ((c = getchar()) != 'q')
{
 SLuint32 playState;
 SLmillisecond PositionMsec = 0;
 SLboolean MidiPlayed = SL_BOOLEAN_FALSE;

 switch(c)
 {
 case '1':

/* Begin playing Midi ringtone if not already playing after stopping and destroying music player */
if (!MidiPlayed)
{
 SLObjectItf Midi_player;
 SLPlayItf Midi_playItf;
 SLDataSource Midi_file;
 SLDataSource Midi_bank;

 SLDataLocator_URI Midi_fileLoc = { SL_DATALOCATOR_URI, "file:///foo.mid"};
 SLDataFormat_MIME Midi_fileFmt = { SL_DATAFORMAT_MIME, "audio/x-midi", SL_CONTAINERTYPE_SMF };
 SLDataLocator_URI Midi_bankLoc = { SL_DATALOCATOR_URI, "file:///foo.dls"};
 SLDataFormat_MIME Midi_bankFmt = { SL_DATAFORMAT_MIME, "audio/dls", SL_CONTAINERTYPE_MOBILE_DLS };

 SLmillisecond Midi_dur;
 SLmillisecond Midi_pos;

 res = (*playItf)->GetPosition(playItf, &PositionMSec);
 CheckErr(res);
 res = (*playItf)->GetPlayState(playItf, &playState);
 CheckErr(res);
 /* Stop the music. */
 res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED); CheckErr(res);
 /* Delete the music player */
 (*player)->Destroy(player);

 Midi_file.pFormat = (void*)&Midi_fileFmt;
 Midi_file.pLocator = (void*)&Midi_fileLoc;
 Midi_bank.pFormat = (void*)&Midi_bankFmt;
 Midi_bank.pLocator = (void*)&Midi_bankLoc;

 /* Create the Midi player */
 res = (*EngineItf)->CreateMidiPlayer(EngineItf, &Midi_player, &Midi_file, &Midi_bank, &audioSink, NULL, NULL, 0, NULL, NULL); CheckErr(res);

 /* Realizing the Midi player object in synchronous mode. */
 res = (*Midi_player)->Realize(Midi_player, SL_BOOLEAN_FALSE); CheckErr(res);
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_PLAY, (void *)&Midi_playItf); CheckErr(res);
 res = (*Midi_playItf)->GetDuration(Midi_playItf, &Midi_dur); CheckErr(res);

 /* Route output to handsfree speaker */
res = (*outputMixItf)->ReRoute(outputMixItf, 1, &handsfree_speaker_deviceID); CheckErr(res);
res = (*Midi_playItf)->SetPlayState(Midi_playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);
do {
 res = (*Midi_playItf)->GetPosition(Midi_playItf, &Midi_pos); CheckErr(res);
} while(Midi_pos < Midi_dur);
MidiPlayed = SL_BOOLEAN_TRUE;
/* Destroy Midi player */
(*Midi_player)->Destroy(Midi_player);
/* Create the music player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &player, &audioSource, &audioSink, 1, iidArray, required); CheckErr(res);
/* Realizing the player in synchronous mode. */
res = (*player)->Realize(player, SL_BOOLEAN_FALSE);
CheckErr(res);
/* Get seek and play interfaces */
res = (*player)->GetInterface(player, SL_IID_SEEK, (void *)&seekItf); CheckErr(res);
res = (*player)->GetInterface(player, SL_IID_PLAY, (void *)&playItf); CheckErr(res);
/* Route output to headset */
res = (*outputMixItf)->ReRoute(outputMixItf, 1, &headset_deviceID); CheckErr(res);
/* Set head to continue from position where it was stopped */
res = (*seekItf)->SetPosition(seekItf, PositionMSec, SL_SEEKMODE_FAST); CheckErr(res);
/* Go back to state before stopped i.e. continue playing music if not already at end of file */
res = (*playItf)->SetPlayState(playItf, playState); CheckErr(res);
} break;
/* Stop the music */
res = (*playItf)->SetPlayState(playItf, SL_PLAYSTATE_STOPPED); CheckErr(res);
/* Delete the player */
(*player)->Destroy(player);
int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;
 char c;

 SLEngineOption EngineOption[] = {
 (SLuint32) SL_ENGINEOPTION_THREADSAFE, (SLuint32) SL_BOOLEAN_TRUE};

 /* Simple test harness! */
 while ((c = getchar()) != 'q')
 {
 switch (c)
 {
 case '2':
 /* Create OpenSL ES */
 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
 CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestPhone(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 break;
 default:
 break;
 }
 }
 exit(0);
}
C.4 Game Profile

This example shows how the API is used in the following case:

There is a stationary 3D positioned Midi sound source, two PCM sound sources which are the sounds of a car engine noise and siren moving at a speed of 50kph from left to right. The Listener is stationary, looking forward.

C.4.1 Object Relationships
C.4.2 Example Code

```c
#include <stdio.h>
#include <stdlib.h>
#include "OpenSLES.h"

#define SLEEP(x)    /* Client system sleep function to sleep x
milliseconds would replace SLEEP macro */

#define MAX_NUMBER_INTERFACES 3
#define MAX_NUMBER_OUTPUT_DEVICES 6
#define CAR_SPEED_KPH 50 /* Speed of car is 50km/hour */
#define CAR_SPEED_MMPSEC CAR_SPEED_KPH*1000000/3600 /* Speed of car in
mm/second */

/* Checks for error. If any errors exit the application! */
void CheckErr( SLresult res )
{
    if ( res != SL_RESULT_SUCCESS )
    {
        /* Debug printing to be placed here */
        exit(1);
    }
}

/* Stationary 3D positioned Midi, 2 PCM sources car engine noise and
siren moving fast from left to right, Listener stationary looking forward */
void TestGame( SLObjectItf sl )
{
    SLEngineItf                EngineItf;
    SLAudioIODeviceCapabilitiesItf AudioIODeviceCapabilitiesItf;
    SLAudioOutputDescriptor     AudioOutputDescriptor;

    SLuint32 OutputDeviceIDs[MAX_NUMBER_OUTPUT_DEVICES];
    SLint32  numOutputs = 0;
    SLboolean headset_available = SL_BOOLEAN_FALSE;
    SLuint32 headset_deviceID = 0;
    SLuint32 deviceID = 0;

    SLresult                res;

    SLObjectItf             Midi_player;
    SLPlayItf               Midi_playItf;
    SLEffectSendItf         Midi_effectSendItf;
    SL3DLocationItf         Midi_3DLocationItf;
    SLDataSource            midSrc;
    SLDataSource            bnkSrc;
```
SLDataLocator_URI Midi_fileLoc = { SL_DATALOCATOR_URI, "file:///foo.mid"};
SLDataFormat_MIME Midi_fileFmt = { SL_DATAFORMAT_MIME, "audio/x-midi", SL_CONTAINERTYPE_SMF };
SLDataLocator_URI Midi_bankLoc = { SL_DATALOCATOR_URI, "file:///foo.dls"};
SLDataFormat_MIME Midi_bankFmt = { SL_DATAFORMAT_MIME, "audio/dls", SL_CONTAINERTYPE_MOBILE_DLS };

SLObjectItf Pcm1_player;
SLObjectItf Pcm2_player;
SLPlayItf Pcm1_playItf;
SLPlayItf Pcm2_playItf;
SLSeekItf Pcm1_seekItf;
SLSeekItf Pcm2_seekItf;
SLPrefetchStatusItf Pcm1_prefetchItf;
SLPrefetchStatusItf Pcm2_prefetchItf;
SL3DGroupingItf Pcm1_3DGroupingItf;
SL3DGroupingItf Pcm2_3DGroupingItf;
SLEffectSendItf Pcm1_effectSendItf;
SLEffectSendItf Pcm2_effectSendItf;

SLDataLocator_URI pcm1Loc = {SL_DATALOCATOR_URI, "file:///pcm1.wav"};
SLDataLocator_URI pcm2Loc = {SL_DATALOCATOR_URI, "file:///pcm2.wav"};
SLDataFormat_MIME pcmFormat = {SL_DATAFORMAT_MIME, "audio/x-wav", SL_CONTAINERTYPE_WAV };
SLDataSource pcm1Src;
SLDataSource pcm2Src;
SLObjectItf Pcm_3DGroup;
SL3DLocationItf Pcm_3DLocationItf;
SL3DDopplerItf Pcm_3DDopplerItf;
SLVec3D Location = {-500000,5000,0}; /* 500 meters to the left of origin, 5 meters in front of origin */
SLVec3D Midi_Location = {5000,-3000,3000}; /* 5 meters to the right of origin, 3 meters behind origin, 3 meters above origin */
SLVec3D StartVelocity = {CAR_SPEED_MMPSEC,0,0};

SLObjectItf GameListener;
SL3DLocationItf Listener_3DLocationItf;
SLVec3D Listener_Front ={0,0,-1000}; /* Vector for having listener look forward */
SLVec3D Listener_Above ={0,1000,0}; /* Vector for having listener look forward */

SLObjectItf OutputMix;
SLVolumeItf volumeItf;
SLOutputMixItf outputMixItf;
SLEnvironmentalReverbItf EnvReverbItf;
SLENVIRONMENTALREVERBSETTINGS ReverbSettings =
SL_I3DL2_ENVIRONMENT_PRESET_CITY;

SLDATALOCATOR_OUTPUTMIX locator_outputmix;
SLDATASINK audioSink;

int i;

SLBOOLEAN required[MAX_NUMBER_INTERFACES];
SLINTERFACEID iidArray[MAX_NUMBER_INTERFACES];
SLMILLISECOND MidiDurationMsec = 0;
SLMILLISECOND PcmDurationMsec = 0;

/* Get the SL Engine Interface which is implicit*/
res = (*sl)->GetInterface(sl, SL_IID_ENGINE, (void *)&EngineItf);
CheckErr(res);

/* Initialize arrays required[] and iidArray[] */
for (i=0; i<MAX_NUMBER_INTERFACES; i++)
{
 required[i] = SL_BOOLEAN_FALSE;
 iidArray[i] = SL_IID_NULL;
}

/* Get the Audio IO DEVICE CAPABILITIES interface */
res = (*sl)->GetInterface(sl, SL_IID_AUDIOIODEVICECAPABILITIES, (void
*)&AudioIODeviceCapabilitiesItf); CheckErr(res);
numOutputs = MAX_NUMBER_OUTPUT_DEVICES;
res = (*AudioIODeviceCapabilitiesItf)->GetAvailableAudioOutputs(
AudioIODeviceCapabilitiesItf, &numOutputs, OutputDeviceIDs);
CheckErr(res);

/* Search for headset output device */
for (i=0; i<numOutputs; i++)
{
 res = (*AudioIODeviceCapabilitiesItf)->
 QueryAudioOutputCapabilities(AudioIODeviceCapabilitiesItf,
 OutputDeviceIDs[i], &AudioOutputDescriptor); CheckErr(res);
 if((AudioOutputDescriptor.deviceConnection ==
 SL_DEVCONNECTION_ATTACHED_WIRED) &&
 (AudioOutputDescriptor.deviceScope == SL_DEVSCOPE_USER) &&
 (AudioOutputDescriptor.deviceLocation ==
 SL_DEVLOCATION_HEADSET))
 {
 headset_deviceID = OutputDeviceIDs[i];
 headset_available = SL_BOOLEAN_TRUE;
 break;
 }
}

/* Expect headset output to be available */
if(!headset_available)
{ /* Debug printing to be placed here */
 exit(1);
}

/* Set arrays required[] and iidArray[] for VOLUME and ENVIRONMENTAL REVERB interface (OUTPUTMIX is implicit) */
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_VOLUME;
required[1] = SL_BOOLEAN_TRUE;
iidArray[1] = SL_IID_ENVIRONMENTALREVERB;

/* Create Output Mix object to be used by all players */
res = (*EngineItf)->CreateOutputMix(EngineItf, &OutputMix, 2,
iidArray, required); CheckErr(res);

/* Realizing the Output Mix object in synchronous mode. */
res = (*OutputMix)->Realize(OutputMix, SL_BOOLEAN_FALSE); CheckErr(res);
 res = (*OutputMix)->GetInterface(OutputMix, SL_IID_VOLUME, (void *)&volumeItf); CheckErr(res);

/* Get the environmental reverb interface */
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_ENVIRONMENTALREVERB, (void *)&EnvReverbItf); CheckErr(res);

/* Set reverb environment to city. */
res = (*EnvReverbItf)->SetEnvironmentalReverbProperties(EnvReverbItf, &ReverbSettings); CheckErr(res);

/* Get Output Mix interface */
res = (*OutputMix)->GetInterface(OutputMix, SL_IID_OUTPUTMIX, (void *)&outputMixItf); CheckErr(res);

/* Route output to headset */
res = (*outputMixItf)->ReRoute(outputMixItf, 1, &headset_deviceID); CheckErr(res);

/* Setup the data sink structure */
locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = OutputMix;
audioSink.pLocator = (void *)&locator_outputmix;
audioSink.pFormat = NULL;

/* Create the Midi player */
/* Set arrays required[] and iidArray[] for 3DLOCATION and EFFECTSEND interfaces (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_3DLOCATION;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_EFFECTSEND;

 res = (*EngineItf)->CreateMidiPlayer(EngineItf, &Midi_player, &midSrc, &bnkSrc, &audioSink, NULL, NULL, 2, iidArray, required); CheckErr(res);

 /* Realizing the Midi player object in synchronous mode. */
 res = (*Midi_player)->Realize(Midi_player, SL_BOOLEAN_FALSE);
 CheckErr(res);

 /* Get playback, 3D location and effectsend interfaces for Midi player */
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_PLAY, (void *)&Midi_playItf); CheckErr(res);
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_3DLOCATION, (void *)&Midi_3DLocationItf); CheckErr(res);
 res = (*Midi_player)->GetInterface(Midi_player, SL_IID_EFFECTSEND, (void *)&Midi_effectSendItf); CheckErr(res);

 /* Get duration of Midi content */
 res = (*Midi_playItf)->GetDuration(Midi_playItf, &MidiDurationMsec); CheckErr(res);

 /* Set 3D location of Midi */
 res = (*Midi_3DLocationItf)->SetLocationCartesian(Midi_3DLocationItf, &Midi_Location); CheckErr(res);

 /* Enable the reverb effect and set the reverb level for Midi Player at -3dB (-300mB) */
 res = (*Midi_effectSendItf)->EnableEffectSend(Midi_effectSendItf, &EnvReverbItf, SL_BOOLEAN_TRUE, -300);

 /* Setup the data source structures for pcm1 and pcm2 */
 pcm1Src.pLocator = (void *)&pcm1Loc;
 pcm2Src.pLocator = (void *)&pcm2Loc;
 pcm1Src.pFormat = (void *)&pcmFormat;
 pcm2Src.pFormat = (void *)&pcmFormat;

 /* Set arrays required[] and iidArray[] for PREFETCH, SEEK, 3DGROUPING and EFFECTSEND interfaces (PlayItf is implicit) */
 required[0] = SL_BOOLEAN_TRUE;
 iidArray[0] = SL_IID_PREFETCHSTATUS;
 required[1] = SL_BOOLEAN_TRUE;
 iidArray[1] = SL_IID_3DGROUPING;
 required[2] = SL_BOOLEAN_TRUE;
 iidArray[2] = SL_IIDSEEK;
 required[3] = SL_BOOLEAN_TRUE;
 iidArray[3] = SL_IID_EFFECTSEND;
/* Create the pcm1 player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &Pcm1_player,
&pcm1Src, &audioSink, 4, iidArray, required); CheckErr(res);

/* Realizing the pcm1 player in synchronous mode. */
res = (*Pcm1_player)->Realize(Pcm1_player, SL_BOOLEAN_FALSE);
CheckErr(res);

/* Get playback, prefetch, seek, 3D grouping and effect send interfaces for Pcm1 player */
res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_PLAY, (void *)&Pcm1_playItf); CheckErr(res);
res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_PREFETCHSTATUS, (void *)&Pcm1_prefetchItf); CheckErr(res);
res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_SEEK, (void *)&Pcm1_seekItf); CheckErr(res);
res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_3DGROUPING, (void *)&Pcm1_3DGroupingItf); CheckErr(res);
res = (*Pcm1_player)->GetInterface(Pcm1_player, SL_IID_EFFECTSEND, (void *)&Pcm1_effectSendItf); CheckErr(res);

/* Get duration of pcm1 content */
res = (*Pcm1_playItf)->GetDuration(Pcm1_playItf, &PcmDurationMsec); CheckErr(res);
if (PcmDurationMsec != SL_TIME_UNKNOWN)
{
 /* Enable looping of entire file */
 res = (*Pcm1_seekItf)->SetLoop(Pcm1_seekItf, SL_BOOLEAN_TRUE, 0, PcmDurationMsec); CheckErr(res);
}
else
{
 /* Debug printing to be placed here */
 exit(1);
}

/* Enable the reverb effect and set the reverb level for Pcm1 Player at -3dB (-300mB) */
res = (*Pcm1_effectSendItf)->EnableEffectSend(Pcm1_effectSendItf, &EnvReverbItf, SL_BOOLEAN_TRUE, -300);

/* Create the pcm2 player */
res = (*EngineItf)->CreateAudioPlayer(EngineItf, &Pcm2_player,
&pcm2Src, &audioSink, 4, iidArray, required); CheckErr(res);

/* Realizing the pcm2 player in synchronous mode. */
res = (*Pcm2_player)->Realize(Pcm2_player, SL_BOOLEAN_FALSE);
CheckErr(res);

/* Get playback, prefetch, 3D grouping and effect send interfaces for Pcm2 player */
res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_PLAY, (void *)&Pcm2_playItf); CheckErr(res);
res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_PREFETCHSTATUS,
(void *) &Pcm2_prefetchItf); CheckErr(res);
res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_SEEK, (void *) &Pcm2_seekItf); CheckErr(res);
res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_3DGROUPING,
(void *) &Pcm2_3DGroupingItf); CheckErr(res);
res = (*Pcm2_player)->GetInterface(Pcm2_player, SL_IID_EFFECTSEND,
(void *) &Pcm2_effectSendItf); CheckErr(res);

/* Get duration of pcm2 content */
res = (*Pcm2_playItf)->GetDuration(Pcm2_playItf, &PcmDurationMsec); CheckErr(res);
if (PcmDurationMsec != SL_TIME_UNKNOWN)
{
/* Enable looping of entire file */
res = (*Pcm2_seekItf)->SetLoop(Pcm2_seekItf, SL_BOOLEAN_TRUE, 0, PcmDurationMsec); CheckErr(res);
} else
{
/* Debug printing to be placed here */
exit(1);
}

/* Enable the reverb effect and set the reverb level for Pcm2 Player at -3dB (-300mB) */
res = (*Pcm2_effectSendItf)->EnableEffectSend(Pcm2_effectSendItf, &EnvReverbItf, SL_BOOLEAN_TRUE, -300);

/* Set arrays required[] and iidArray[] for 3DDoppler interface (3DLocation is implicit) */
required[0] = SL_BOOLEAN_TRUE;
iidArray[0] = SL_IID_3DDOPPLER;

/* Create 3DGroup to be used for pcm1 and pcm2 */
res = (*EngineItf)->Create3DGroup(EngineItf, &Pcm_3DGroup, 1, iidArray, required); CheckErr(res);

/* Realizing the 3DGroup in synchronous mode. */
CheckErr(res);
res = (*Pcm_3DGroup)->GetInterface(Pcm_3DGroup, SL_IID_3DLOCATION,
(void *) &Pcm_3DLocationItf); CheckErr(res);
res = (*Pcm_3DGroup)->GetInterface(Pcm_3DGroup, SL_IID_3DDOPPLER,
(void *) &Pcm_3DDopplerItf); CheckErr(res);

/* Add pcm1 and pcm2 players to 3DGroup */
res = (*Pcm1_3DGroupingItf)->Set3DGroup(Pcm1_3DGroupingItf, Pcm_3DGroup); CheckErr(res);
res = (*Pcm2_3DGroupingItf)->Set3DGroup(Pcm2_3DGroupingItf, Pcm_3DGroup); CheckErr(res);
/* Set arrays required[] and iidArray[] for 3DDoppler interface (3DLocation is implicit) */
required[0] = SL_BOOLEAN_TRUE;
iiArray[0] = SL_IID_3DLOCATION;

/* Create Listener */
res = (*EngineItf)->CreateListener(EngineItf, &GameListener, l,
required, required); CheckErr(res);

/* Realizing the Listener in synchronous mode. */
res = (*GameListener)->Realize(GameListener, SL_BOOLEAN_FALSE);
CheckErr(res);
res = (*GameListener)->GetInterface(GameListener, SL_IID_3DLOCATION,
(void *)&Listener_3DLocationItf); CheckErr(res);

/* Set 3D orientation of Listener to look forward - even though this
is the default */
res = (*Listener_3DLocationItf)->SetOrientationVectors(Listener_3DLocationItf,
&Listener_Front, &Listener_Above); CheckErr(res);

/* Set location of 3Dgroup */
res = (*Pcm_3DLocationItf)->SetLocationCartesian(Pcm_3DLocationItf,
&Location); CheckErr(res);

/* Set velocity of 3Dgroup */
res = (*Pcm_3DDopplerItf)->SetVelocityCartesian(Pcm_3DDopplerItf,
&StartVelocity); CheckErr(res);

/* Place pcm1 and pcm2 players into Paused state to start prefetch */
res = (*Pcm1_playItf)->SetPlayState(Pcm1_playItf,
SL_PLAYSTATE_PAUSED); CheckErr(res);
res = (*Pcm2_playItf)->SetPlayState(Pcm2_playItf,
SL_PLAYSTATE_PAUSED); CheckErr(res);

/* Wait until prefetch buffer is full for both pcm1 and pcm2 players */
{
SLpermille Pcm1FillLevel = 0;
SLpermille Pcm2FillLevel = 0;
while((Pcm1FillLevel != 1000)||(Pcm2FillLevel != 1000))
{
res = (*Pcm1_prefetchItf)->GetFillLevel(Pcm1_prefetchItf,
&Pcm1FillLevel); CheckErr(res);
res = (*Pcm2_prefetchItf)->GetFillLevel(Pcm2_prefetchItf,
&Pcm2FillLevel); CheckErr(res);
}

/* Start all 3 players */
res = (*Midi_playItf)->SetPlayState(Midi_playItf,
SL_PLAYSTATE_PLAYING); CheckErr(res);
res = (*Pcm1_playItf)->SetPlayState(Pcm1_playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);
res = (*Pcm2_playItf)->SetPlayState(Pcm2_playItf, SL_PLAYSTATE_PLAYING); CheckErr(res);

/* Move the location of the 3D group each second to maintain a speed of 50km/hour in direction of x-axis */
{
 SLmillisecond Midi_pos;
 SLint32 XaxisLocation = Location.x;
 do
 {
 SLEEP(1000); /* Delay 1000ms i.e. 1 second */

 XaxisLocation = Location.x + CAR_SPEED_MMPSEC;
 if(XaxisLocation <= 5000000) /* Continue moving car sounds until 5km away */
 {
 Location.x = XaxisLocation;
 res = (*Pcm_3DLocationItf)->SetLocationCartesian(Pcm_3DLocationItf, &Location); CheckErr(res);
 res = (*Midi_playItf)->GetPosition(Midi_playItf, &Midi_pos); CheckErr(res);
 while(Midi_pos < MidiDurationMsec); /* continue until Midi file finishes */
 }
 }

 /* Stop the PCM players */
 res = (*Pcm1_playItf)->SetPlayState(Pcm1_playItf, SL_PLAYSTATE_STOPPED); CheckErr(res);
res = (*Pcm2_playItf)->SetPlayState(Pcm2_playItf, SL_PLAYSTATE_STOPPED); CheckErr(res);

 /* Remove pcm1 and pcm2 players from 3DGroup */
res = (*Pcm1_3DGroupingItf)->Set3DGroup(Pcm1_3DGroupingItf, NULL); CheckErr(res);
res = (*Pcm2_3DGroupingItf)->Set3DGroup(Pcm2_3DGroupingItf, NULL); CheckErr(res);

 /* Destroy the objects */
(*Pcm_3DGroup)->Destroy(Pcm_3DGroup);
(*GameListener)->Destroy(GameListener);
(*Pcm2_player)->Destroy(Pcm2_player);
(*Pcm1_player)->Destroy(Pcm1_player);
(*Midi_player)->Destroy(Midi_player);
(*OutputMix)->Destroy(OutputMix);
}
int sl_main(void)
{
 SLresult res;
 SLObjectItf sl;
 char c;

 SLEngineOption EngineOption[] = {
 (SLuint32)SL_ENGINEOPTION_THREADSAFE, (SLuint32)SL_BOOLEAN_TRUE
 };

 /* Simple test harness! */
 while ((c = getchar()) != 'q')
 {
 switch (c)
 {
 case '3':
 /* Create OpenSL ES */
 res = slCreateEngine(&sl, 1, EngineOption, 0, NULL, NULL);
 CheckErr(res);
 /* Realizing the SL Engine in synchronous mode. */
 res = (*sl)->Realize(sl, SL_BOOLEAN_FALSE); CheckErr(res);
 TestGame(sl);
 /* Shutdown OpenSL ES */
 (*sl)->Destroy(sl);
 break;
 default:
 break;
 }
 }

 exit(0);
}
Appendix D: Object-Interface Mapping

The following table describes the object-interface mapping per profile. It also shows mandated objects for each profile in its second row.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Object</th>
<th>Engine</th>
<th>Audio Player</th>
<th>MIDI player</th>
<th>Audio recorder</th>
<th>Listener</th>
<th>3D group</th>
<th>Output mix</th>
<th>Vibra</th>
<th>LED Array</th>
<th>Metadata Extractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLDynamicInterfaceManagementItf</td>
<td></td>
</tr>
<tr>
<td>SLEngineItf</td>
<td></td>
</tr>
<tr>
<td>SLEngineCapabilitiesItf</td>
<td></td>
</tr>
<tr>
<td>SLThreadSyncItf</td>
<td></td>
</tr>
<tr>
<td>SLAudioIODeviceCapabilitiesItf</td>
<td></td>
</tr>
<tr>
<td>SLAudioDecoderCapabilitiesItf</td>
<td></td>
</tr>
<tr>
<td>SLAudioEncoderCapabilitiesItf</td>
<td></td>
</tr>
<tr>
<td>SLLLEDArrayItf</td>
<td></td>
</tr>
<tr>
<td>SLVibraItf</td>
<td></td>
</tr>
<tr>
<td>SLPlayItf</td>
<td></td>
</tr>
<tr>
<td>SLRecordItf</td>
<td></td>
</tr>
<tr>
<td>SLAudioEncoderItf</td>
<td></td>
</tr>
<tr>
<td>SLPrefetchStatusItf</td>
<td></td>
</tr>
<tr>
<td>SLS początku</td>
<td></td>
</tr>
<tr>
<td>SLLSeekItf</td>
<td></td>
</tr>
<tr>
<td>SLPPlaybackRateItf</td>
<td></td>
</tr>
<tr>
<td>SRLRatePitchItf</td>
<td></td>
</tr>
<tr>
<td>SLPitchItf</td>
<td></td>
</tr>
</tbody>
</table>
OpenSL ES 1.0 Specification

<table>
<thead>
<tr>
<th>Interface</th>
<th>Object</th>
<th>Engine</th>
<th>Audio Player</th>
<th>MIDI player</th>
<th>Audio recorder</th>
<th>Listener</th>
<th>3D group</th>
<th>Output mix</th>
<th>Vibra</th>
<th>LED Array</th>
<th>Metadata Extractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLVolumeItf</td>
<td>P M G</td>
<td>B</td>
<td>B</td>
<td>G</td>
<td>P M G</td>
<td>P M G</td>
<td>P M G</td>
<td>P M G</td>
<td>B</td>
<td>P M G</td>
<td></td>
</tr>
<tr>
<td>SLMuteSoloItf</td>
<td></td>
</tr>
<tr>
<td>SLBLBufferQueueItf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SLMIDIMessageItf</td>
<td></td>
</tr>
<tr>
<td>SLMIDITimeItf</td>
<td></td>
</tr>
<tr>
<td>SLMIDITempoItf</td>
<td></td>
</tr>
<tr>
<td>SLMIDIInternalMuteSoloItf</td>
<td></td>
</tr>
<tr>
<td>SL3DCommitItf</td>
<td></td>
</tr>
<tr>
<td>SL3DGroupingItf</td>
<td></td>
</tr>
<tr>
<td>SL3DLocationItf</td>
<td></td>
</tr>
<tr>
<td>SL3DSoundEffectSendItf</td>
<td></td>
</tr>
<tr>
<td>SLBassBoostItf</td>
<td></td>
</tr>
<tr>
<td>SLEqualizerItf</td>
<td></td>
</tr>
<tr>
<td>SPLPresetReverbItf</td>
<td></td>
</tr>
<tr>
<td>SLEnvironmentalReverbItf</td>
<td></td>
</tr>
<tr>
<td>SLVirtualizerItf</td>
<td></td>
</tr>
<tr>
<td>SLMetadataExtractionItf</td>
<td></td>
</tr>
</tbody>
</table>
OpenSL ES 1.0 Specification

<table>
<thead>
<tr>
<th>Interface</th>
<th>Engine</th>
<th>Audio Player</th>
<th>MIDI player</th>
<th>Audio recorder</th>
<th>Listener</th>
<th>3D group</th>
<th>Output mix</th>
<th>Vibra</th>
<th>LED Array</th>
<th>Metadata Extractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLVisualizationItf</td>
<td></td>
</tr>
<tr>
<td>SLOutputMixItf</td>
<td></td>
</tr>
<tr>
<td>SLDynamicSourceItf</td>
<td></td>
</tr>
<tr>
<td>SLDdeviceVolumeItf</td>
<td></td>
</tr>
</tbody>
</table>
OpenSL ES 1.0 Specification

Legend

<table>
<thead>
<tr>
<th>P</th>
<th>Object mandated in Phone profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Object mandated in Music profile</td>
</tr>
<tr>
<td>G</td>
<td>Object mandated in Game profile</td>
</tr>
<tr>
<td>P</td>
<td>Object optional in Phone profile</td>
</tr>
<tr>
<td>M</td>
<td>Object optional in Music profile</td>
</tr>
<tr>
<td>G</td>
<td>Object optional in Game profile</td>
</tr>
</tbody>
</table>

- Implicit and mandated interface
- Mandated (explicit) interface
- Explicit interface mandated only in specified circumstances, see comments.
- Mandated (explicit) interface with some optional methods, see comments.
- Applicable optional interfaces

Comments for explicit interfaces mandated only in specified circumstances:
1. This interface mandated for all players excluding those with Java Tone Sequences (JTS) data sources.
2. This interface is only mandated where the data source’s locator is a buffer queue (SLDataLocator_BufferQueue or SLDataLocator_MIDIBufferQueue).

Comments for mandated interfaces with some optional methods:

A. Arbitrary loop points are not mandated in this profile, only end-to-end looping is mandated.
B. SetStereoPosition(), GetStereoPosition(), EnableStereoPosition() and IsEnabledStereoPosition() is not mandated in this profile.
C. SetLoopPoints() & GetLoopPoints() is not mandated in the profile.